Public Release:  Novel aptamer boosts T cell-based immune response to therapeutic vaccines

Mary Ann Liebert, Inc./Genetic Engineering News

IMAGE

IMAGE: Nucleic Acid Therapeutics is published in print and online six times per year. For more information visit http://www.liebertpub.com/nat.... view more

Credit: ©2013, Mary Ann Liebert, Inc., publishers

New Rochelle, NY, January 22, 2013--A small compound called an aptamer that specifically targets and stimulates a human immune cell can greatly increase the effectiveness of an immunotherapeutic drug designed to destroy malignant or virus-infected cells. The development of a novel apatamer that recognizes activated T-lymphocytes and can boost the therapeutic effect of cell-based vaccines is described in an article in Nucleic Acid Therapeutics, a peer-reviewed journal from Mary Ann Liebert, Inc. publishers (http://www.liebertpub.com). The article is available on the Nucleic Acid Therapeutics website (http://www.liebertpub.com/nat).

Elizabeth Pratico, Bruce Sullenger, and Smita Nair, Duke University Medical Center, Durham, NC, describe the innovative techniques they used to create an aptamer--a short sequence of nucleic acids--that binds to the human protein OX40, a costimulatory molecule present on the surface of already activated immune cells.

In the article "Identification and Characterization of an Agonistic Aptamer Against the T Cell Costimulatory Receptor, OX40," (http://online.liebertpub.com/doi/full/10.1089/nat.2012.0388) the researchers demonstrate that binding of the aptamer to OX40 on activated T cells enhances the cells' ability to proliferate and to produce the immunostimulatory cytokine interferon-gamma. The authors envision future studies that would evaluate the therapeutic potential of the human OX40 aptamer, which could be used to stimulate T cells during the production of patient-specific vaccines for use in cell therapy and personalized medicine.

"The therapeutic potential of aptamers has always been one of their most promising aspects," says Executive Editor Fintan Steele, PhD, SomaLogic, Inc., Boulder, CO. "This elegant work by the Duke team underlines that promise while extending it into the critical area of immunotherapy."

###

Nucleic Acid Therapeutics is under the editorial leadership of Co-Editors-in-Chief Bruce A. Sullenger, PhD, Duke Translational Research Institute, Duke University Medical Center, Durham, NC, and C.A. Stein, MD, PhD, City of Hope National Medical Center, Duarte, CA; and Executive Editor Fintan Steele, PhD (SomaLogic, Boulder, CO).

About the Journal

Nucleic Acid Therapeutics (http://www.liebertpub.com/nat) is an authoritative, peer-reviewed journal published bimonthly in print and online that focuses on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. Nucleic Acid Therapeutics is the Official Journal of the Oligonucleotide Therapeutics Society (http://www.oligotherapeutics.org). Complete tables of content and a free sample issue may be viewed on the Nucleic Acid Therapeutics website (http://www.liebertpub.com/nat).

About the Publisher

Mary Ann Liebert, Inc., publishers (http://www.liebertpub.com) is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy, Genetic Testing and Molecular Biomarkers, ASSAY and Drug Development Technologies, and DNA and Cell Biology. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc. publishers website (http://www.liebertpub.com).

Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215
http://www.liebertpub.com
Phone: (914) 740-2100
(800) M-LIEBERT
Fax: (914) 740-2101

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.