[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
13-Feb-2013

[ | E-mail ] Share Share

Contact: Neal Moawed
press@jove.com
617-245-0137
The Journal of Visualized Experiments
@JoVEJournal

Origami meets chemistry in scholarly video-article

IMAGE: Here are some of the possible shapes made from Dr. Gracias' self-folding particles.

Click here for more information.

February 13, 2013

Cambridge, MA: The nanotechnology research space is rapidly growing, with vast implications for the healthcare, consumer electronics, surveillance, and defense industries. However, a major limitation to this research is the ability to create particles that vary in shape and function on a micrometer or nanometer scale.

To overcome these limitations, chemical engineers at Johns Hopkins University have developed self-assembling particles that are inspired by origami, the traditional Japanese art of folding paper into complex three-dimensional shapes. A new article in JoVE (Journal of Visualized Experiments) demonstrates the fabrication and folding of these particles.

"In this video-article, we take the idea of folding up particles and demonstrate the technology in two applications. In the first application, the particles seal up because of glue like material at the edges. In the second part, we talk about structures that reconfigure in response to a stimulus," said author Dr. David Gracias of Johns Hopkins University in Baltimore, Maryland.

VIDEO: This is the JoVE video published in this article.

Click here for more information.

Dr. Gracias uses a process called photolithography to etch structural designs and flexible hinges on to a 2-D surface. When these complex patterns are exposed to the correct environmental pressures, they can be manipulated to fold and seal or open and close. This fabrication process also allows crucial structural patterns to be printed on 3-D particles, as Dr. Gracias explains: "Patterns are required for electronic circuits, and we allow patterns to be used in 3-D. The applications are numerous, ranging from drug delivery to mechanical sensing, bio-sensing technologies applicable to threat detection, surveillance, and in non-invasive surgery or biopsies."

The authors believe that the applications of this technology are far reaching, and that video publication in JoVE will expedite its adoption by other scientists. "We have developed a new platform, like welding, and we hope that publishing the video will make it more likely for others to use this platform," Dr. Gracias explains. He continues, "One of the concerns with chemistry is that most chemists work with models which cannot be seen. Animation and videos published in JoVE will make these models much easier to understand."

This video article is published in JoVE Chemistry, the newest section of JoVE that was launched in February 2013. "This article really underscores why we chose to open JoVE Chemistry," said Associate Editor Rachelle Baker about Dr. Gracias' article. She continues, "Not only is chemistry a fundamental science but it is a meeting point for interdisciplinary research with bioengineering and physics as well. A video protocol that can enable 2D patterning onto 3D particles of various sizes will be widely applicable to other studies in various disciplines."

###

Gracias et. al.

About JoVE, The Journal of Visualized Experiments:

JoVE, the Journal of Visualized Experiments, is the first and only PubMed/MEDLINE-indexed, peer-reviewed journal devoted to publishing scientific research in a video format. Using an international network of videographers, JoVE films and edits videos of researchers performing new experimental techniques at top universities, allowing students and scientists to learn them much more quickly. As of February 2013, JoVE has published video-protocols from an international community of nearly 6,000 authors in the fields of biology, medicine, chemistry, and physics.

URL: www.jove.com

To link to this release, please use this link: http://www.jove.com/about/press-releases/54/origami-meets-chemistry-in-scholarly-video-article

Contact:

Neal Moawed
Academic Liaison & Marketing Associate
The Journal of Visualized Experiments
p. 617-945-9051
e. neal.moawed@jove.com

Press Access

We offer complimentary access to verified press contacts. If you are interested in being on our press list, please create an account and send an email request to press@jove.com.

Please make sure to follow our Twitter account.

If you have any questions or requests, contact us at press@jove.com.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.