[ Back to EurekAlert! ] Public release date: 7-Feb-2013
[ | E-mail Share Share ]

Contact: Connie Hughes
connie.hughes@wolterskluwer.com
646-674-6348
Wolters Kluwer Health

Subcortical damage is 'primary cause' of neurological deficits after 'awake craniotomy'

Even with brain mapping, damage to inner brain structures can occur during conscious brain surgery, reports Neurosurgery

Philadelphia, Pa. (February 7, 2013) – Injury to the subcortical structures of the inner brain is a major contributor to worsening neurological abnormalities after "awake craniotomy" for brain tumors, reports a study in the February issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

During a procedure intended to protect critical functional areas in the outer brain (cortex), damage to subcortical areas—which may be detectable on MRI scans—is a major risk factor for persistent neurological deficits. "Our ability to identify and preserve cortical areas of function can still result in significant neurological decline postoperatively as a result of subcortical injury," write Dr. Victoria T. Trinh and colleagues of The University of Texas MD Anderson Cancer Center, Houston.

Risk Factors for Neurological Deficits after Awake Craniotomy

The researchers analyzed factors associated with worsening neurological function after awake craniotomy for brain tumor surgery. In awake craniotomy, the patient is sedated but conscious so as to be able to communicate with the surgeon during the operation.

The patient is asked to perform visual and verbal tasks while specific areas of the cortex are stimulated, generating a functional map of the brain surface. This helps the surgeon navigate safely to the tumor without damaging the "eloquent cortex"—critical areas of the brain involved in language or movement.

The study included 241 patients who underwent awake craniotomy with functional brain mapping from 2005 through 2010. Of these, 40 patients developed new neurological abnormalities. Dr. Trinh and colleagues examined potential predictive factors—including changes on a type of MRI scan called diffusion-weighted imaging (DWI).

Of the 40 cases with new neurological deficits, 36 developed while the surgeon was operating in the subcortical areas of the brain. These are the inner structures of the brain, located beneath the outer, folded brain cortex. Just one abnormality developed while the surgeon was operating in the cortex only.

MRI Changes May Reflect Subcortical Damage

Neurological abnormalities developing while the surgeon was operating in the subcortex were likely to remain after surgery, and to persist at three months' follow-up evaluation. Dr. Trinh and coauthors write, "Patients with intraoperative deficits during subcortical dissection were over six times more likely to have persistently worsened neurological function at three-month follow-up."

In these patients, MRI scans showing more severe changes in the DWI pattern in the subcortex also predicted lasting neurological abnormalities. Of patients who had neurological deficits immediately after surgery and significant DWI changes, 69 percent had persistent deficits three months after surgery.

Patients who had "positive" cortical mapping—that is, in whom eloquent cortex was located during functional mapping—were somewhat more likely to have neurological abnormalities immediately after surgery. However, the risk of lasting abnormalities was not significantly higher compared to patients with negative cortical mapping.

Awake craniotomy with brain stimulation produces a "real-time functional map" of the brain surface that is invaluable to the neurosurgeon in deciding how best to approach the tumor. The new results suggest that, even when the eloquent cortex is not located on cortical mapping, subcortical areas near the tumor can still be injured during surgery. "Subcortical injury is the primary cause of neurological deficits following awake craniotomy procedures," Dr. Trinh and colleagues write.

The researchers add, "Preserving subcortical areas during tumor resections may reduce the severity of both immediate and late neurological sequelae." Based on their findings, they believe subcortical mapping techniques may play an important role in avoiding complications after awake craniotomy.

###

About Neurosurgery

Neurosurgery, the Official Journal of the Congress of Neurological Surgeons, is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

About Lippincott Williams & Wilkins

Lippincott Williams & Wilkins (LWW) is a leading international publisher of trusted content delivered in innovative ways to practitioners, professionals and students to learn new skills, stay current on their practice, and make important decisions to improve patient care and clinical outcomes. LWW is part of Wolters Kluwer Health, a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company with 2011 annual revenues of €3.4 billion ($4.7 billion).



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.