[ Back to EurekAlert! ] Public release date: 21-Mar-2013
[ | E-mail Share Share ]

Contact: Jeremy Moore
jeremy.moore@aacr.org
215-446-7109
American Association for Cancer Research

Functional characteristics of antitumor T cells change w increasing time after therapeutic transfer

PHILADELPHIA Scientists have characterized how the functionality of genetically engineered T cells administered therapeutically to patients with melanoma changed over time. The data, which are published in Cancer Discovery, a journal of the American Association for Cancer Research, highlight the need for new strategies to sustain antitumor T cell functionality to increase the effectiveness of this immunotherapeutic approach.

Early clinical research has indicated that cell-based immunotherapies for cancer, in particular melanoma, have potential because patients treated with antitumor T cells frequently have an initial tumor response; however, those responses are often transient.

"The cell-based immunotherapy we utilized was that of genetically engineered T cells," said James R. Heath, Ph.D., Elizabeth W. Gilloon Professor of Chemistry at the California Institute of Technology in Pasadena, Calif. "This approach is the most widely applicable way to generate large numbers of highly functional antitumor T cells."

Different T cell functions are associated with distinct proteins. Heath and colleagues took a closer look at how genetically engineered T cells functioned or failed after being transferred into patients. To do this, they used a recently developed, multiplexed technology that gave them a high-resolution view of which function-associated proteins individual cells expressed.

The researchers analyzed T cells isolated from blood samples taken from three patients with melanoma at several time points after treatment with genetically engineered antimelanoma T cells. Each of the patients from whom samples were taken had exhibited a different level of response to the immunotherapy.

The most highly functioning genetically engineered antimelanoma T cells made up about 10 percent of the total population of transferred T cells.

"However, they dominated the immune response," Heath said. "In other words, 10 percent of the cells are putting out 100 times more protein than the other cells."

Although these highly functioning genetically engineered T cells had high tumor-killing capabilities when a patient first received them, those capabilities disappeared within two to three weeks.

"The genetically engineered T cells did recover their high functional capacity, but those functions no longer included tumor-killing," Heath said. "However, there was another population of T cells that emerged at around one month that did exhibit tumor-killing characteristics."

These new T cells appeared to be a byproduct, through a process known as epitope spreading, of the original genetically engineered, tumor-killing T cells the patient received, Heath explained. The researchers also discovered one potential cause for the transient response to T cell therapy. Results showed that as the patient's own immune system recovered, after its initial depletion prior to therapy, those recovering T cells appeared to inhibit the antitumor immune response.

###

Follow the AACR on Twitter: @aacr

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.