News Release

New early warning system for the brain development of babies published in video journal

Video of technique now available in the Journal of Visualized Experiments

Peer-Reviewed Publication

The Journal of Visualized Experiments

Monitoring the Infant

image: This is an example of the device used to monitor the infant. view more 

Credit: <a target="_blank" href="http://www.jove.com">www.jove.com</a>

A new research technique, pioneered by Dr. Maria Angela Franceschini, will be published in JoVE (Journal of Visualized Experiments) on March 14th. Researchers at Massachusetts General Hospital and Harvard Medical School have developed a non-invasive optical measurement system to monitor neonatal brain activity via cerebral metabolism and blood flow.

Of the nearly four million children born in the United States each year, 12% are born preterm, 8% are born with low birth weight, and 1-2% of infants are at risk for death associated with respiratory distress. The result is an average infant mortality rate of 6 deaths per 1,000 live births. These statistics, though low compared to those of 50 or even 20 years ago, are troubling both to parents and to clinicians. Until recently there were no effective bedside methods to screen for brain injury or monitor injury progression that can contribute to developmental abnormalities or infant mortality. Dr. Franceschini's new system does both.

"We want to measure cerebral vascular development and brain health in babies," Dr. Franceschini tells us. Because neuronal metabolism is hard to measure directly, scientists instead evaluate cerebral oxygen metabolism, which highly corresponds to neuronal metabolism. Dr. Franceschini and her team have developed a near infrared optical system to quantify cerebral oxygen metabolism by measuring blood oxygen saturation and blood flow.

The technology is an improvement on continuous-wave near-infrared spectroscopy (CWNIRS), which measures oxygen saturation but does not provide long-term or real time brain monitoring. Instead, frequency-domain near-infrared spectroscopy (FDNIRS) is used in conjunction with diffuse correlation spectroscopy (DCS) to get a more robust evaluation of infant health. Dr. Franceschini explains, "CWNIRS has been used for many years but it only provides relative measurements of blood oxygen saturation. Our technology allows quantification of multiple vascular parameters and evaluation of oxygen metabolism which gives a more direct picture of infant distress."

"This technology will let us monitor babies who may be having seizures, cerebral hemorrhages, or other cerebral distresses and may allow us to expedite treatment," says Dr. Franceschini, who plans to develop and streamline this technology to one that nurses can use clinically. "We chose to publish in JoVE because it is important to show how these measurements can be done and this publication lets us reach early adopters."

###

About JoVE, the Journal of Visualized Experiments:

JoVE, the Journal of Visualized Experiments, is the first and only PubMed/MEDLINE-indexed, peer-reviewed journal devoted to publishing scientific research in a video format. Using an international network of videographers, JoVE films and edits videos of researchers performing new experimental techniques at top universities, allowing students and scientists to learn them much more quickly. As of March 2013, JoVE has published video-protocols from an international community of nearly 6,000 authors in the fields of biology, medicine, chemistry, and physics.

URL: http://www.jove.com

To link to this release, please use this link: http://www.jove.com/about/press-releases/55/new-early-warning-system-for-brain-development-babies-published-video

Contact:
Rachel Greene
Marketing Director
The Journal of Visualized Experiments
p. 617.945.9051
e. press@jove.com

Press Access

We offer complimentary access to verified press contacts. If you are interested in being on our press list, please create an account and send an email request to press@jove.com.

Please make sure to follow our Twitter account. If you have any questions or requests, contact us at press@jove.com.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.