[ Back to EurekAlert! ] Public release date: 12-Mar-2013
[ | E-mail Share Share ]

Contact: Brielle Day
bday@osa.org
202-416-1435
The Optical Society

Ultra-high-speed optical communications link sets new power efficiency record

IMAGE: This shows optical link test chips, including transmitter circuits, laser diodes, photo diode, and receiver circuits.

Click here for more information.

Ultrafast supercomputers that operate at speeds 100 times faster than current systems are now one step closer to reality. A team of IBM researchers working on a U.S. Defense Advanced Research Projects Agency (DARPA)-funded program have found a way to transmit massive amounts of data with unprecedentedly low power consumption.

The team will describe their prototype optical link, which shatters the previous power efficiency record by half at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) in Anaheim, Calif. March 17-21.

Scientists predict that the supercomputers of the future—so-called "exascale computers"—will enable them to model the global climate, run molecular-level simulations of entire cells, design nanostructures, and more. "We envision machines reaching the exascale mark around 2020, but a great deal of research must be done to make this possible," says Jonathan E. Proesel, a research staff member at the IBM T. J. Watson Research Center in Yorktown Heights, N.Y. To reach that mark, researchers must develop a way to quickly move massive amounts of data within the supercomputer while keeping power consumption in check.

By combining innovative circuits in IBM's 32-nanometer silicon-on-insulator complementary metal-oxide-semiconductor (SOI CMOS) technology with advanced vertical cavity surface emitting lasers (VCSELs) and photodetectors fabricated by Sumitomo Electric Device Innovations USA (formerly Emcore), Proesel and his colleagues created a power-efficient optical communication link operating at 25 gigabits per second using just 24 milliwatts of total wall-plug power, or 1 pJ/bit. "Compared to our previous work, we have increased the speed by 66 percent while cutting the power in half," Proesel says. "We're continuing the push for lower power and higher speed in optical communications. There will always be demand to move more data with less energy, and that's what we're working toward."

###

Proesel's presentation at OFC/NFOEC, titled, "35-Gb/s VCSEL-Based Optical Link using 32-nm SOI CMOS Circuits" will take place Monday, March 18 at 2 p.m. in the Anaheim Convention Center.

About OFC/NFOEC

For more than 35 years, the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking, fiber optics and, recently, datacom and computing. Consistently ranked in the top 200 tradeshows in the United States, and named one of the Fastest Growing Trade Shows in 2012 by TSNN, OFC/NFOEC unites service providers, systems companies, enterprise customers, IT businesses, and component manufacturers, with researchers, engineers, and development teams from around the world. OFC/NFOEC includes dynamic business programming, an exposition of more than 550 companies, and cutting-edge peer-reviewed research that, combined, showcase the trends and pulse of the entire optical communications industry.

OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc), and the IEEE Photonics Society. OFC/NFOEC 2013 takes place March 17 – 21 at the Anaheim Convention Center in Anaheim, Calif. For more information, visit http://www.ofcnfoec.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.