[ Back to EurekAlert! ] Public release date: 24-Jul-2013
[ | E-mail Share Share ]

Contact: Darrell E. Ward
Darrell.Ward@osumc.edu
614-293-3737
Ohio State University Wexner Medical Center

Researchers target HER1 receptor for peptide cancer vaccine, therapeutic agents

COLUMBUS, Ohio -- Small proteins called peptides that consist of 10 to 50 amino acids are being studied as cancer vaccines and as possibly safer, more effective and less costly alternatives to the monoclonal-antibody-based drugs and small-molecule inhibitors now used to treat many malignancies.

Researchers at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC James) have identified two regions on the HER1/EGFR receptor, a protein important for cancer-cell growth and metastasis and for poor patient survival, as targets for peptide agents.

The receptor molecule protrudes from the surface of cancer cells in abnormally high numbers. It is activated by growth factors in the blood and released by other cells in the tumor, stimulating tumor growth.

"Our findings could lead to novel peptide vaccines and mimetic inhibitors that target HER1 in tumors of the breast, lung, colon and head and neck, and that overcome many of the significant shortcomings of antibody-based drugs such as cetuximab," says principal investigator Pravin Kaumaya, PhD, director of the division of vaccine development at the OSUCCC - James.

"Such peptide agents might enable the development of combination immunotherapies using either HER2 vaccines or VEGF therapy that avoid the mechanisms of resistance or secondary treatment failures sometimes experienced with antibody treatment," says Kaumaya, who is also professor of obstetrics and gynecology, of molecular and cellular biochemistry, and of microbiology at Ohio State.

The study is published in the Journal of Immunology.

HER1 is a member of the epithelial growth factor (EGF) family of cell-surface receptors, which includes the HER2 receptor. These receptors play a central role in the development of a variety of human cancers, including certain breast cancers, lung cancer, colorectal and head and neck cancers.

Kaumaya and his colleagues evaluated three sequences of peptides to determine which were the most specific and immunogenic (i.e., raised the strongest immune response in test animals), and therefore were best suited for use as vaccines or therapeutics. The three sequences, or epitopes, were based on the site of contact between HER1 and the growth factor that normally binds with it, epithelial growth factor (EGF). Key technical findings included:

###

Funding from the NIH/National Cancer Institute (grant CA084356) supported this research. Other Ohio State researchers involved in this study were Kevin Chu Foy, Ruthie M. Wygle, Megan J. Miller, Jay P. Overholser and Tanios Bekaii-Saab.

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 228-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.