News Release

Fetal tissue-derived stem cells may be ideal source for repairing tissues and organs

MFDCs have many advantages over adult skin cells, including proliferation and differentiation

Peer-Reviewed Publication

Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (Aug 22 2013) – Multipotent fetal dermal cells (MFDCs) may be an ideal source for cell therapy for repairing damaged tissues and organs. Their performance is superior to that of adult dermal cells, said a research team in Italy that developed a cell isolation technique for MFDCs and subsequently published a study that appears as an early e-publication for the journal Cell Transplantation, and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/pre-prints/ct1022chinnici.

"When compared to adult dermal cells, fetal cells display several advantages, including a greater cellular yield after isolation, the ability to proliferate longer, and the retention of differentiation potential," said study co-author Dr. C.M. Chinnici of the Fondazie Ri.MED, Regenerative Medicine and Biomedical Technologies Unit in Palermo, Italy. "Cells from fetal dermis have been proven safe and efficacious in the treatment of pediatric burns, but proper characterization of these cells has not yet been provided."

Their research provided a protocol for the isolation and expansion of large numbers of MFDCs that may see future clinical use, said the study authors.

"We generated, propagated and analyzed a proliferating population of cells derived from human fetal dermis taken at 20-22 weeks of gestation," wrote the researchers. "The non-enzymatic isolation technique allows for a spontaneous selection of cells with higher motility and yields a nearly homogeneous cell population."

The MFDCs, they reported, were "highly proliferative and were successfully expanded with no growth factor additions." They noted that, unlike mensenchymal stem cells, which progressively lose their differentiation capacity, the MFDCs "retained their osteogenenic and adipogenic differentiation potential" meaning that their potential impact for cell transplantation is likely to be greater.

"The MFDCs demonstrated their favorable characteristics for a potential large scale production aimed at clinical use," said Dr. Chinnici.

The researchers noted that the most interesting aspect of their study was the finding that multipotent cells can be successfully isolated from small fetal skin biopsies and maintained in culture for long periods with multipotency, stability and low immunogenicity retained, "thus generating large quantities of cells for clinical use."

"Given these results, the future prospect is to translate the concept of MFDCs as cells of therapeutic interest into experimental models of tissue regeneration," they concluded.

###

"Identifying different sources of stem cells is an important factor in maximizing the potential impact of stem cell transplantation as a therapeutic." said Dr. Maria C. O. Rodrigues, at the Ribeirão Preto School of Medicine, University of Sao Paulo, Brazil and section editor for Cell Transplantation. "A protocol for isolating and expanding MFDCs is therefore a significant step in this direction."

Contact: Dr. C.M. Chinnici, Fondazione Ri.MED, Via E. Tricomi 5, 90127, Palermo, Italy.
Ph: +39 0912192496
Fax: +39 0912192422
Email: cchinnici@fondazionerimed.com.

Citation: Chinnici, C. M.; Amico, G.; Monti, M.; Motta, S.; Casalone, R.; Petri, S. L.; Spada, M.; Gridelli, B.; Conaldi, P. G. Isolation and Characterization of Multipotent Cells from Human Fetal Dermis. Cell Transplant. Appeared or available online: June 13, 2013

The Coeditors-in-chief for CELL TRANSPLANTATION are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

News release by Florida Science Communications http://www.sciencescribe.net


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.