[ Back to EurekAlert! ] Public release date: 7-Aug-2013
[ | E-mail Share Share ]

Contact: Darrell E. Ward
Darrell.Ward@osumc.edu
614-293-3737
Ohio State University Wexner Medical Center

Loss of MicroRNA decoy might contribute to development of soft-tissue sarcoma

COLUMBUS, Ohio Researchers have discovered a novel mechanism responsible for the loss of a critical tumor-suppressor gene in rhabdomyosarcoma and other soft-tissue sarcomas, rare cancers that strike mainly children and often respond poorly to treatment. Their cause is largely unknown.

Knowledge of the mechanism could guide the development of more effective therapies for these malignancies, say researchers who led the study at The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC James).

The researchers found that the tumor-suppressor gene called A20 is silenced not by mutation, as in many other cancers, but because a second molecule is lost, a small molecule called microRNA-29 (miR-29). In addition, they found that miR-29 normally protects A20 from destruction. When miR-29 is absent, A20 is degraded. Loss of A20, in turn, leads to a dramatic rise in levels of a protein called NF-kB and to tumor progression.

The findings are published in the journal Science Signaling.

"We do know that NF-kB is a tumor promoter, but we don't know why it is upregulated in many cancers," says principal investigator Denis Guttridge, PhD, professor of molecular virology, immunology and medical genetics and a member of the OSUCCC James Molecular Biology and Cancer Genetics Program.

"Our study indicates that it involves a regulatory circuit between NF-kB, miR-29 and the A20 tumor-suppressor gene," Guttridge says. "It also identifies NF-kB as a therapeutic target in sarcoma and A20 and miR-29 as potential biomarkers for sarcoma."

"We are excited about these findings because they open up new vistas on the role of microRNAs in sarcoma development and provide a rationale for further interrogating this circuitry as a potential target for new treatments," says study pathologist and coauthor O. Hans Iwenofu, MD, FCAP, assistant professor of pathology and member of the OSUCCC James Molecular Biology and Cancer Genetics Program.

Soft-tissue sarcomas cancers of muscle, other soft tissues and bone make up about 15 percent of pediatric cancer cases. In 2013, about 11,400 cases of sarcoma are expected in the United States, and about 4,400 Americans are expected to die from the malignancy.

For this study, Guttridge, Iwenofu and their colleagues used human tumor samples, cell lines and animal models. Key technical findings include:

"The loss of the A20 tumor-suppressor gene because the microRNA decoy is absent may represent another mechanism to explain why NF-kB is constitutively active in sarcoma cancers," Guttridge says.

###

Other researchers involved in this study were Mumtaz Yaseen Balkhi, O. Hans Iwenofu, Katherine J. Ladner, Cheryl A. London, William Kraybill, Danilo Perrotti and Carlo M. Croce, The Ohio State University; Nadine Bakkar, Barrow Neurological Institute; Dawn S. Chandler, and Peter J. Houghton, Nationwide Children's Hospital; Charles Keller, Oregon Health and Science University.

The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 228-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S. News & World Report.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.