Public Release:  Butterfly wings inspire new technologies: from fabrics and cosmetics to sensors

University of Exeter

A new study has revealed that the stunning iridescent wings of the tropical blue Morpho butterfly could expand the range of innovative technologies. Scientific lessons learnt from these butterflies have already inspired designs of new displays, fabrics and cosmetics.

Now research by the University of Exeter, in collaboration with General Electric (GE) Global Research Centre, University at Albany and Air Force Research Laboratory, and funded by the US Defense Advanced Research Projects Agency (DARPA), has discovered that the physical structure and surface chemistry of the Morpho butterfly's wings provides surprising properties that could offer a variety of applications ranging from photonic security tags to self cleaning surfaces and protective clothing and to industrial sensors.

Tiny tree-like nanostructures on the scales of Morpho wings are known to be responsible for the butterfly's brilliant metallic blue iridescence. The study, published in the journal PNAS, found that vapour molecules adhere differently to the tops of these structures than to the bottom. This selective response to vapour molecules is the key to the range of possible bio-inspired technological applications.

Dr Radislav Potyrailo, from GE, who is the Principal Investigator on this DARPA Program, said: "Our interdisciplinary team of physicists, chemists, biologist, and materials scientists was able to unveil the existence of surface polarity gradient on iridescent Morpho butterfly scales. This discovery further allowed us to bring a multivariable perspective for vapour sensing, where selectivity is achieved within a single chemically graded nanostructured sensing unit, rather than from an array of separate sensors".

Professor Pete Vukusic from the University of Exeter said: "Understanding iridescence in butterflies and moths has revolutionised our knowledge of natural photonics. By using design ideas from nature we are able to work towards the development of applications in a range of different technologies. In this study the team discovered a new mechanism in photonic vapour sensing that demonstrates combined physical and chemical effects on the nanoscale."

Although not essential for butterfly survival, this unique property of selective gas adsorption is a by-product of the process of butterfly wing scale development.

###

About the University of Exeter

The Sunday Times University of the Year 2012-13, the University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 7th in The Sunday Times University Guide, 10th in The Complete University Guide, 10th in the UK in The Times Good University Guide 2012 and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange on the Penryn Campus in Cornwall, together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for another £330 million of investment between now and 2016.

http://www.exeter.ac.uk

For further information and images:
Dr Jo Bowler
University of Exeter Press Office
Office: +44 (0)1392 722062
Mobile: +44(0)7827 309 332
Twitter: @UoE_ScienceNews
j.bowler@exeter.ac.uk

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.