News Release

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

Peer-Reviewed Publication

RIKEN

Aβ Plaque Formation Depends on Autophagy

image: Aβ plaque formation depends on autophagy. Immunohistological analysis of Aβ plaque of 20-month-old APP and Atg7flox/flox; CamKII-Cre x APP mouse brains. view more 

Credit: Per Nilsson, RIKEN

Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes new research from the RIKEN Brain Science Institute in Japan. The study sheds light on the metabolism of amyloid beta, and its role in neurodegeneration and memory loss.

In a study published today in the journal Cell Reports, Drs. Per Nilsson, Takaomi Saido and their team show for the first time using transgenic mice that a lack of autophagy in neurons prevents the secretion of amyloid beta and the formation of amyloid beta plaques in the brain. The study also reveals that an accumulation of amyloid beta inside neurons is toxic for the cells.

Alzheimer's disease, the most common form of dementia, affects nearly 36 million people worldwide, and this number is set to double over the next 20 years. However, the causes of the disease are not well understood and no disease-modifying treatment is available today.

Patients with Alzheimer's disease have elevated levels of the peptide amyloid beta in their brain and amyloid beta plaques form outside their neurons. This accumulation of amyloid beta causes the neurons to die, but until now the underlying mechanism remained a mystery. And whether the elevated levels of the peptide inside or outside the cells are to blame was unknown.

Autophagy is a cellular cleaning mechanism that normally clears any protein aggregates or other 'trash' within the cells, but that is somewhat disturbed in Alzheimer's patients.

To investigate the role of autophagy in amyloid beta metabolism, Nilsson et al. deleted an important gene for autophagy, Atg7, in a mouse model of Alzheimer's disease. Contrary to what they were expecting, their results showed that a complete lack of autophagy within neurons prevents the formation of amyloid beta plaque around/outside the cells. Instead, the peptide accumulates inside the neurons, where it causes neuronal death, which in turn leads to memory loss.

"Our study explains how amyloid beta is secreted from the neurons, via autophagy, which wasn't well understood," comments Dr Nilsson. "To control amyloid beta metabolism including its secretion is a key to control the disease. Autophagy might therefore be a potential drug target for the treatment of Alzheimer's disease," he adds.

###

For more information, please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Mobile phone: +81-(0)808895-2136
Email: pr@riken.jp

High-resolution pictures and the original research article in Cell Reports are available on request.

Reference

Nilsson et al., "Ab Secretion and Plaque Formation Depend on Autophagy"
Cell Reports (2013) DOI: 10.1016/j.celrep.2013.08.042

About RIKEN

RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technical journals, covering a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a reputation for scientific excellence worldwide.

Website: http://www.riken.jp/en/ Find us on Twitter at @riken_en

About the RIKEN Brain Science Institute

The RIKEN Brain Science Institute (BSI) performs cutting-edge neuroscience research in the service of society with an international reputation as an innovative center for research and training. Researchers at BSI seek to understand brain functions from molecules to neural circuits to cognition, using methods drawn from a wide range of disciplines. BSI is also leading efforts to provide career opportunities for researchers in Japan and around the world.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.