[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
3-Dec-2013

[ | E-mail ] Share Share

Contact: Mary Leach
Mary_Leach@meei.harvard.edu
Massachusetts Eye and Ear Infirmary

Researchers turn current sound-localization theories 'on their ear'

Mass. Eye and Ear scientists challenge the two dominant theories of how people localize sounds

BOSTON (Dec. 3, 2013) The ability to localize the source of sound is important for navigating the world and for listening in noisy environments like restaurants, an action that is particularly difficult for elderly or hearing impaired people. Having two ears allows animals to localize the source of a sound. For example, barn owls can snatch their prey in complete darkness by relying on sound alone. It has been known for a long time that this ability depends on tiny differences in the sounds that arrive at each ear, including differences in the time of arrival: in humans, for example, sound will arrive at the ear closer to the source up to half a millisecond earlier than it arrives at the other ear. These differences are called interaural time differences. However, the way that the brain processes this information to figure out where the sound came from has been the source of much debate.

A recent paper by Mass. Eye and Ear/Harvard Medical School researchers in collaboration with researchers at the Ecole Normale Superieure, France, challenge the two dominant theories of how people localize sounds, explain why neuronal responses to sounds are so diverse and show how sound can be localized, even with the absence of one half of the brain. Their research is described on line in the journal eLife.

"Progress has been made in laboratory settings to understand how sound localization works, but in the real world people hear a wide range of sounds with background noise and reflections," said Dan F. M. Goodman, lead author and post-doctoral fellow in the Eaton-Peabody Laboratories at Mass. Eye and Ear, Harvard Medical School. "Theories based on more realistic environments are important. The theme of the paper is that previous theories about this have been too idealized, and if you use more realistic data, you come to an entirely different conclusion."

"Two theories have come to dominate our understanding of how the brain localizes sounds: the peak coding theory (which says that only the most strongly responding brain cells are needed), and the hemispheric coding theory (which says that only the average response of the cells in the two hemispheres of the brain are needed)," Goodman said. "What we've shown in this study is that neither of these theories can be right, and that the evidence they presented only works because their experiments used unnatural/idealized sounds. If you use more realistic, natural sounds, then they both do very badly at explaining the data."

Researchers showed that to do well with realistic sounds, one needs to use the whole pattern of neural responses, not just the most strongly responding or average response. They showed two other key things: first, it has long been known that the responses of different auditory neurons are very diverse, but this diversity was not used in the hemispheric coding theory.

"We showed that the diversity is essential to the brain's ability to localize sounds; if you make all the responses similar then there isn't enough information, something that was not appreciated before because if one has unnatural/idealized sounds you don't see the difference" Goodman said.

Second, previous theories are inconsistent with the well-known fact that people are still able to localize sounds if they lose one half of our brain, but only sounds on the other side (i.e. if one loses the left half of the brain, he or she can still localize sounds coming from the right), he added.

"We can explain why this is the case with our new theory," Goodman said.

###

The full study, including a description of the research methods used, is available at http://elife.elifesciences.org/. A full list of authors is also included in the paper.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute, Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology among the top hospitals in the nation.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.