[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
31-Dec-2013

[ | E-mail ] Share Share

Contact: CUI TieJun
tjcui@seu.edu.cn
Science China Press

Large-aperture planar lens antennas with gradient refractive index

It was recently shown that large-aperture lens antennas can be designed by using gradient-index (GRIN) metamaterials and that higher directivity and gain can be obtained than with traditional dielectric lens antennas. This provides an effective method to design high-performance lens antennas.

A paper titled "Three-dimensional large-aperture lens antennas with gradient refractive index," published in SCIENCE CHINA Information Sciences, 2013, No. 12, investigates the principles and performance of GRIN lens antennas from the perspectives of design, fabrication, and experiment.

Lens antennas have traditionally been of two different compositions: either the dielectric delay or the metal accelerating lens. These two lens types are designed to focus electromagnetic waves by means of special hyperbolic or ellipsoidal geometric configurations, which can incur many difficulties in design and fabrication. Classical lenses made of homogeneous dielectrics use curved surfaces to compensate for phase differences, while metamaterial lenses make use of gradients in refractive index to realize the required phase changes.

GRIN lenses offer several advantages: (1) a simple flat GRIN lens can be used to focus the electromagnetic waves and hence is easier to design and realize; (2) the impedance of a GRIN lens is easy to match with air, and hence little reflection loss exists to affect the antenna's efficiency; and (3) a wide range of indices of refraction can be obtained using metamaterials, making possible GRIN lenses that are much thinner than traditional ones.

In this work, three-dimensional GRIN lenses are fabricated using multilayer inhomogeneous drilling holes or square ring resonators, which possess the desirable characteristics of high gain, broad bandwidth, and dual polarization. Two impedance-matching layers are proposed for the two sides of the GRIN lens, yielding very low reflection coefficients.

In addition, an intriguing development has recently emerged in GRIN metamaterials—GRIN metasurfaces. By employing an idea similar to the GRIN slab lens to generate the required phase distributions, a GRIN metasurface can also be used to manipulate wavefronts for high-gain antenna performance.

###

This work was sponsored in part by the National Natural Science Foundation of China (grants 60990320, 60990321, 60990324, 61171024, 61171026, and 61138001), the National High-Tech R&D (863) Program (Nos. 2011AA010202 and 2012AA030402), and the 111 Project (No. 111-2-05).

See the article: ZHOU X Y, ZOU X Y, YANG Y, MA H F, CUI T J. Three-dimensional large-aperture lens antennas with gradient refractive index. SCIENCE CHINA Information Sciences, 2013, 56: 120410, doi:10.1007/s11432-013-5038-8.

http://info.scichina.com:8084/sciFe/EN/abstract/abstract512917.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.