[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
20-Dec-2013

[ | E-mail ] Share Share

Contact: Julie O'Connor
julie.oconnor@wayne.edu
313-577-8845
Wayne State University - Office of the Vice President for Research

Wayne State University physicists publish observation of the 'Charming Socialites'

IMAGE: The decay of the D*+ into a D0 and a soft (low-momentum) pion. The D0 then decays into a negative kaon and a positive pion. This is called a right-sign...

Click here for more information.

DETROIT Protons and neutrons, the particles in an atomic nucleus, are made of smaller pieces called "quarks." Some types of quarks can form particles that exhibit surprising behaviors. Mark Mattson, Ph.D., assistant professor-research, and Paul Karchin, Ph.D., professor, from Wayne State University's Department of Physics and Astronomy in the College of Liberal Arts and Sciences, led a large collaborative effort of physicists at the Fermi National Accelerator Laboratory (Fermilab) in Illinois reporting a bizarre "social" behavior of particles containing "charm" quarks: an observation of "charm mixing." The result was published this month in Physical Review Letters, the highly-regarded journal for particle physics.

Since the discovery of the charm quark in 1974, physicists have postulated a rare process in which a charm particle spontaneously changes into its antiparticle. Evidence for this unique behavior was uncovered more than three decades later by experiments in the US and Japan. However, conclusive observation did not emerge until this year from the CERN laboratory in Switzerland and Fermilab in the U.S.

IMAGE: The ratio of the rare D0 decay mode (K+pi-) to a more common one (K-pi+) versus decay time, measured in units of the D0 lifetime. If the mixing process did...

Click here for more information.

Mattson and Karchin worked closely with team co-leaders from Fermilab and the University of Siena in Italy. Robert Harr, Ph.D. and Alexey Petrov, Ph.D., professors of physics and astronomy at Wayne State, served as team advisors.

The charm mixing that has been observed could be due solely to known elementary particles but may also indicate the presence of previously undiscovered particles and force carriers. Future measurements with improved precision and refined theoretical interpretation may elucidate the puzzle of why particle matter in the universe overwhelmingly dominates over antimatter.

###

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.