Public Release:  Want a good night's sleep in the new year? Quit smoking

New research in The FASEB Journal identifies the mechanism by which tobacco smoke affects the expression of clock genes in the lung and resets levels of locomotor activity in the brain

Federation of American Societies for Experimental Biology

As if cancer, heart disease and other diseases were not enough motivation to make quitting smoking your New Year's resolution, here's another wake-up call: New research published in the January 2014 issue of The FASEB Journal suggests that smoking disrupts the circadian clock function in both the lungs and the brain. Translation: Smoking ruins productive sleep, leading to cognitive dysfunction, mood disorders, depression and anxiety.

"This study has found a common pathway whereby cigarette smoke impacts both pulmonary and neurophysiological function. Further, the results suggest the possible therapeutic value of targeting this pathway with compounds that could improve both lung and brain functions in smokers," said Irfan Rahman, Ph.D., a researcher involved in the work from the Department of Environmental Medicine at the University of Rochester Medical Center in Rochester, N.Y. "We envisage that our findings will be the basis for future developments in the treatment of those patients who are suffering with tobacco smoke-mediated injuries and diseases.

Rahman and colleagues found that tobacco smoke affects clock gene expression rhythms in the lung by producing parallel inflammation and depressed levels of brain locomotor activity. Short- and long- term smoking decreased a molecule known as SIRTUIN1 (SIRT1, an anti-aging molecule) and this reduction altered the level of the clock protein (BMAL1) in both lung and brain tissues in mice. A similar reduction was seen in lung tissue from human smokers and patients with chronic obstructive pulmonary disease (COPD). They made this discovery using two groups of mice which were placed in smoking chambers for short-term and long-term tobacco inhalation. One of the groups was exposed to clean air only and the other was exposed to different numbers of cigarettes during the day. Researchers monitored their daily activity patterns and found that these mice were considerably less active following smoke exposure.

Scientists then used mice deficient in SIRT1 and found that tobacco smoke caused a dramatic decline in activity but this effect was attenuated in mice that over expressed this protein or were treated with a small pharmacological activator of the anti-aging protein. Further results suggest that the clock protein, BMAL1, was regulated by SIRT1, and the decrease in SIRT1 damaged BMAL1, resulting in a disturbance in the sleep cycle/molecular clock in mice and human smokers. However, this defect was restored by a small molecule activator of SIRT1.

"If you only stick to one New Year's resolution this year, make it quitting smoking," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Only Santa Claus has a list longer than that of the ailments caused or worsened by smoking. If you like having a good night's sleep, then that's just another reason to never smoke."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 110,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Jae-Woong Hwang, Isaac K. Sundar, Hongwei Yao, Michael T. Sellix, and Irfan Rahman Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. January 2014 28:176-194; doi:10.1096/fj.13-232629 ; http://www.fasebj.org/content/28/1/176.abstract

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.