[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
18-Feb-2014

[ | E-mail ] Share Share

Contact: Juliette Savin
juliette.savin@riken.jp
81-048-462-1225
RIKEN

A circuit for change

IMAGE: Imaging of cell activity (green) across the hippocampus reveals CA2 (red) can detect small changes in a familiar context. Wintzer et al, Journal Of Neuroscience 2014.

Click here for more information.

To answer the seemingly simple question "Have I been here before?" we must use our memories of previous experiences to determine if our current location is familiar or novel. In a new study published in the Journal of Neuroscience researchers from the RIKEN Brain Science Institute have identified a region of the hippocampus, called CA2, which is sensitive to even small changes in a familiar context. The results provide the first clue to the contributions of CA2 to memory and may help shed light on why this area is often found to be abnormal in the schizophrenic brain.

Change comes in many flavors; if we move to a new country, city or house it is easy to recognize the novelty of the environment, but if we come home to find the furniture rearranged or a new piece of art on the wall, this recognition may be much slower. Scientists believe this is because memory formation requires comparing current information with previous experience and the larger the overlap, the more difficult the distinction. It has long been known that the hippocampus is a region of the brain crucial for this type of memory, however the identification of neurons responsible for this comparison has remained elusive.

In this study Marie Wintzer, Roman Boehringer, Denis Polygalov and Thomas McHugh used genetically modified mice and advanced cell imaging techniques to demonstrate that while the entire hippocampus is capable of detecting large changes in context, the small and often overlooked CA2 region is exquisitely sensitive to small changes.

Mice were familiarized with one context and then placed either in a much different context or back in the original with small alterations, such as several new small objects. By detecting the expression of activity induced genes Wintzer and colleagues were able to demonstrate that just a few new objects in the otherwise unchanged context completely altered the pattern of active cells specifically in CA2. Mice that had been genetically engineered to lack this CA2 response explored the new context much less than their normal siblings.

IMAGE: Imaging of cell activity (green) across the hippocampus reveals CA2 (red) can detect small changes in a familiar context. Wintzer et al. Journal Of Neuroscience 2014.

Click here for more information.

"CA2 has often been overlooked or simply grouped together with its more prominent neighbors, but these data suggest it's unique and important for recognizing and reacting to changes in our environments" explains Dr. McHugh, the leader of the study.

Compared to rodents, human CA2 is proportionally larger, but still as mysterious. One intriguing finding has been that early in the onset of schizophrenia and bipolar disorder there is a loss of inhibitory neurons specifically in CA2. In addition to the memory problems that accompany these diseases, patients often exhibit a hyper-sensitivity to changes in environment and routine. This study suggests there may be a functional relationship between this sensitivity and CA2 dysfunction, hinting at a new circuit to target in our attempts to understand the function of both the normal and diseased brain.

###

For more information please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Mobile phone: +81-(0)80-8895-2136
email: pr@riken.jp

Reference:

Marie E. Wintzer, Roman Boehringer, Denis Polygalov, Thomas J. McHugh (2014). The hippocampal CA2 ensemble is sensitive to contextual change. J. Neuroscience DOI:

Pictures and the original journal research article in Journal of Neuroscience are available on request.

About RIKEN

RIKEN is Japan's largest research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in leading scientific and technology journals covering a broad spectrum of disciplines including physics, chemistry, biology, engineering, and medical science. RIKEN's research environment and strong emphasis on interdisciplinary collaboration and globalization has earned a worldwide reputation for scientific excellence.

Website: http://www.riken.jp/en/ Find us on Twitter at @riken_en

About the RIKEN Brain Science Institute

The RIKEN Brain Science Institute (BSI) performs cutting-edge neuroscience research in the service of society and has earned an international reputation as an innovative center for research and training. Researchers at BSI seek to understand brain functions from molecules to neural circuits to cognition, using methods drawn from a wide range of disciplines. BSI is also leading efforts to provide career development for researchers in Japan and around the world.

Website: http://www.brain.riken.jp/en/



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.