News Release

In search of lost genes

Peer-Reviewed Publication

University of Veterinary Medicine -- Vienna

Fruit Flies Help Discover How Genes Get Lost

image: The fruit fly Drosophila was the genetic model that the researchers used for their studies. view more 

Credit: Photo: Markus Riedl/Vetmeduni Vienna

How do new genes arise? Current research shows that so-called "orphan genes" may appear as if by magic as a result of mutations in segments of DNA that previously had no function. Orphan genes were first discovered in the fruit fly but are found in all organisms, including man. Strikingly, up to 30 per cent of the total number of genes in an organism may be orphans and these genes may rapidly acquire functions. Scientists from the Institute of Population Genetics of the University of Veterinary Medicine, Vienna (Vetmeduni) have now investigated the fate of orphan genes. They show for the first time that orphan genes are frequently lost and consider the factors the influence the "survival" of the young genes.

Young orphans are at greatest risk

Together with Christian Schlötterer, the Head of the Institute, and other colleagues, Nicola Palmieri investigated the genes in a European species of fruit fly (Drosophila pseudoobscura). The scientists compared the genetic sequence of five related strains of the species, looking for orphan genes and examining the life cycles of the various genes in the fly genome. They discovered that most orphan genes persist for relatively few generations. As Schlötterer explains, "Some genes last for a long time through the evolution of species: these are known as conserved genes. Orphan genes represent the exact opposite: they come and go. Interestingly the youngest orphan genes seem to disappear the fastest. Orphan genes that are 'older' are more likely to remain in the genome."

The researchers identified a number of factors that determine the length of time a young gene remains in a population. Active genes, i.e. those that produce a large amount of RNA, seem more likely to be retained than less active genes; and genes that are more active in males than in females also persist for longer.

Life on the X chromosome: short and sweet

Another important factor is the precise position where an orphan gene is located. When a new gene arises on the X chromosome (males have one X chromosome and females two) it is likely to cease functioning much faster than genes that arise on other chromosomes. Surprisingly, though, there are more orphans on the X chromosome than at other sites in the genome. It is currently unclear why this is so, despite the apparent existence of a mechanism that makes it hard for orphan genes to "survive" on the X chromosome. Life on the X chromosome may be short but it is clearly attractive.

Important tools for evolution

Schlötterer is keen to emphasize the importance of orphan genes for evolution. "Orphan genes are probably extremely important for rapid, short-term adaptations, when a species needs something new and innovative. When they are no longer needed they can be quickly removed from the genome." Recent work in another group has shown how orphan genes can arise: Palmieri and Schlötterer's work now completes the picture by showing how and when they disappear.

###

The article „The life cycle of Drosophila orphan genes", by Nicola Palmieri, Carolin Kosiol and Christian Schlötterer was published in the journal eLife.

DOI: 10.7554/elife.01311

http://arxiv.org/abs/1401.4956

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna is the only academic and research institution in Austria that focuses on the veterinary sciences. About 1200 employees and 2300 students work on the campus in the north of Vienna, which also houses the animal hospital and various spin-off-companies. http://www.vetmeduni.ac.at

Scientific Contact:

Prof. Christian Schlötterer
Institute of Population Genetics
University of Veterinary Medicine, Vienna (Vetmeduni Vienna)
T +43 1 20577-4300
christian.schloetterer@vetmeduni.ac.at

Released by:

Susanna Kautschitsch
Science Communication | Public Relations
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
Veterinärplatz 1, 1210 Wien
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at
http://www.vetmeduni.ac.at
http://www.facebook.at/vetmeduni.vienna
http://twitter.com/vetmedunivienna (@VetmeduniVienna)


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.