[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
3-Apr-2014

[ | E-mail ] Share Share

Contact: Joel Watts
joel.watts@utoronto.ca
416-507-6891
PLOS

What bank voles can teach us about prion disease transmission and neurodegeneration

IMAGE: This image shows accumulation of misfolded, toxic prion protein (brown staining) in the brain of a transgenic mouse expressing bank vole PrP and challenged with human variant Creutzfeldt-Jakob disease (vCJD)...

Click here for more information.

When cannibals ate brains of people who died from prion disease, many of them fell ill with the fatal neurodegenerative disease as well. Likewise, when cows were fed protein contaminated with bovine prions, many of them developed mad cow disease. On the other hand, transmission of prions between species, for example from cows, sheep, or deer to humans, is—fortunately—inefficient, and only a small proportion of exposed recipients become sick within their lifetimes.

A study published on April 3rd in PLOS Pathogens takes a close look at one exception to this rule: bank voles appear to lack a species barrier for prion transmission, and their universal susceptibility turns out to be both informative and useful for the development of strategies to prevent prion transmission.

Prions are misfolded, toxic versions of a protein called PrP, which in its normal form is present in all mammalian species that have been examined. Toxic prions are "infectious"; they can induce existing, properly folded PrP proteins to convert into the disease-associated prion form. Prion diseases are rare, but they share features with more common neurodegenerative diseases like Alzheimer's disease.

Trying to understand the unusual susceptibility of bank voles to prions from other species, Stanley Prusiner, Joel Watts, Kurt Giles and colleagues, from the University of California in San Francisco, USA, first tested whether the susceptibility is an intrinsic property of the voles' PrP, or whether other factors present in these rodents make them vulnerable.

The scientists introduced into mice the gene that codes for the normal bank vole prion protein, thereby generating mice that express bank vole PrP, but not mouse PrP. When these mice get older, some of them spontaneously develop neurologic illness, but in the younger ones the bank vole PrP is in its normal, benign folded state. The scientists then exposed young mice to toxic misfolded prions from 8 different species, including human, cattle, elk, sheep, and hamster.

They found that all of these foreign-species prions can cause prion disease in the transgenic mice, and that the disease develops often more rapidly than it does in bank voles. The latter is likely because the transgenic mice express higher levels of bank vole PrP than are naturally present in the voles.

The results show that the universal susceptibility of bank voles to cross-species prion transmission is an intrinsic property of bank vole PrP. Because the transgenic mice develop prion disease rapidly, the scientists propose that the mice will be useful tools in studying the processes by which toxic prions "convert" healthy PrP and thereby destroy the brain. And because that process is similar across many neurodegenerative diseases, better understanding prion disease development might have broader implications.

###

Please contact plospathogens@plos.org to request more information about our content and topics of interest.

CONTACT:
Joel Watts
e-mail: joel.watts@utoronto.ca
phone: (416) 507-6891

Kurt Giles
e-mail: kgiles@ind.ucsf.edu
phone: (415) 502-7090

Article Link: http://dx.plos.org/10.1371/journal.ppat.1003990 (link goes lives upon article publication)

Image links: Bank Vole: http://www.plos.org/wp-content/uploads/2013/05/Pathogens_Prusiner_April3_IMG1.jpg

Cell Stain: http://www.plos.org/wp-content/uploads/2013/05/Watts_PLoSPathog_Apr3_img2.tiff
Image caption: Accumulation of misfolded, toxic prion protein (brown staining) in the brain of a transgenic mouse expressing bank vole PrP and challenged with human variant Creutzfeldt-Jakob disease (vCJD) prions. Credit: Image courtesy of Dr. Joel Watts.

Authors and Affiliations:
Joel C. Watts, University of California San Francisco, California
Kurt Giles, University of California San Francisco, California
Smita Patel, University of California San Francisco, California
Abby Oehler, University of California San Francisco, California
Stephen J. DeArmond, University of California San Francisco, California
Stanley B. Prusiner, University of California San Francisco, California

Citation: Watts JC, Giles K, Patel S, Oehler A, DeArmond SJ, et al. (2014) Evidence That Bank Vole PrP Is a Universal Acceptor for Prions. PLoS Pathog 10(4): e1003990. doi:10.1371/journal.ppat.1003990

Funding: This work was supported by grants from the National Institutes of Health (AG021601, AG002132, AG010770, AG031220, and NS064173) as well as by a gift from the Sherman Fairchild Foundation. JCW was supported by a postdoctoral fellowship from the Canadian Institutes of Health Research (CIHR), a K99 grant from the National Institute on Aging (AG042453), and a research grant from the Creutzfeldt-Jakob Disease Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.