[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
1-May-2014

[ | E-mail ] Share Share

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
www.twitter.com/AFTAUnews

Unlocking a mystery of thalidomide

Tel Aviv University pinpoints mechanism causing rare and severe congenital syndrom

In the 1950s and 1960s, pregnant women with morning sickness were often prescribed the new drug thalidomide. Shortly after the medicine was released on the market, a reported 10,000 infants were born with an extreme form of the rare congenital phocomelia syndrome, which caused death in 50 percent of cases and severe physical and mental disabilities in others. Although various factors are now known to cause phocomelia, the prominent roots of the disease can be found in the use of the drug thalidomide.

Now, half a century later, new research by Dr. Noam Shomron, Prof Arkady Torchinsky, and doctoral student Eyal Mor at Tel Aviv University's Sackler Faculty of Medicine, published in Archives of Toxicology, identifies a regulator responsible for the malformation of limbs in phocomelia, pinpointing a specific target for possible future intervention.

"We were reading old textbooks from the 1950s and '60s, trying to understand the studies carried out then on this intriguing topic, and we saw that we could undertake an in-depth examination of the disorder's processes using careful planning and execution of experiments on mouse and rat models," said Dr. Shomron. "We hoped to gain a much better understanding of embryo malformation."

In the genes

Prof. Torchinsky worked together with Mor to carry out an experiment on animal models in the laboratory. They injected mice and rats with an embryo malformation factor or "teratogen" (called 5-aza-2'-deoxycytidin) with effects similar to thalidomide. The chemical is also used in chemotherapeutics. With the factor, the researchers induced phocomelia in either the forelimbs or hind limbs of the animals.

Afterward, by analyzing the entire gene and tiny regulatory RNA molecules called microRNAs in all the mouse limbs (both healthy and afflicted), the researchers were able to pinpoint the genetic regulator the precise "switch" turned on or off during genetic processes responsible for the malformation, p53, and its downstream target gene, MicroRNA34.

"We have added another perspective to the overall picture by investigating the genetic mechanisms involved in other words, the gene expression rather than the genetic code affected during pathology," said Dr. Shomron. "I expect that further understanding of the mechanisms involved in teratogens and how they induce phocomelia will help reveal the dangers associated with toxins and will also reveal the underlying functional role of genes and microRNAs modulating genetic expression in the process."

Dr. Shomron said the work carried out by the team addresses a long-standing paradigm of limb malformation in mammals and reflects the role that epigenetic regulation, as opposed to genetic regulation, plays in the development of disease. In other words, embryonic development can be caused by a genetic mutation (a "mis-print" in the book of life) or, in this case, by turning the genes on or off without any change in the genetic code itself. Dr. Shomron and his team are currently studying the effects of other toxins on the mal-development of mammalian embryos.

###

American Friends of Tel Aviv University supports Israel's leading, most comprehensive and most sought-after center of higher learning, Tel Aviv University (TAU). Rooted in a pan-disciplinary approach to education, TAU is internationally recognized for the scope and groundbreaking nature of its research and scholarship attracting world-class faculty and consistently producing cutting-edge work with profound implications for the future. TAU is independently ranked 116th among the world's top universities and #1 in Israel. It joins a handful of elite international universities that rank among the best producers of successful startups.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.