[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
9-Jun-2014

[ | E-mail ] Share Share

Contact: Layne Cameron
layne.cameron@cabs.msu.edu
517-353-8819
Michigan State University

How much fertilizer is too much for the climate?

EAST LANSING, Mich. Helping farmers around the globe apply more-precise amounts of nitrogen-based fertilizer can help combat climate change.

In a new study published in this week's Proceedings of the National Academy of Sciences, Michigan State University researchers provide an improved prediction of nitrogen fertilizer's contribution to greenhouse gas emissions from agricultural fields.

The study uses data from around the world to show that emissions of nitrous oxide, a greenhouse gas produced in the soil following nitrogen addition, rise faster than previously expected when fertilizer rates exceed crop needs.

Nitrogen-based fertilizers spur greenhouse gas emissions by stimulating microbes in the soil to produce more nitrous oxide. Nitrous oxide is the third most important greenhouse gas, behind only carbon dioxide and methane, and also destroys stratospheric ozone. Agriculture accounts for around 80 percent of human-caused nitrous oxide emissions worldwide, which have increased substantially in recent years, primarily due to increased nitrogen fertilizer use.

"Our specific motivation is to learn where to best target agricultural efforts to slow global warming," said Phil Robertson, director of MSU's Kellogg Biological Station Long-term Ecological Research Program and senior author of the paper. "Agriculture accounts for 8 to 14 percent of all greenhouse gas production globally. We're showing how farmers can help to reduce this number by applying nitrogen fertilizer more precisely."

The production of nitrous oxide can be greatly reduced if the amount of fertilizer crops need is exactly the amount that's applied to farmers' fields. Simply put, when plant nitrogen needs are matched with the nitrogen that's supplied, fertilizer has substantially less effect on greenhouse gas emission, Robertson said.

Iurii Shcherbak, lead author and MSU researcher, noted that the research also informs fertilizer practices in underfertilized areas such as sub-Saharan Africa.

"Because nitrous oxide emissions won't be accelerated by fertilizers until crop nitrogen needs are met, more nitrogen fertilizer can be added to underfertilized crops with little impact on emissions," she said.

Adding less nitrogen to overfertilized crops elsewhere, however, would deliver major reductions to greenhouse gas emissions in those regions.

This study provides support for expanding the use of carbon credits to pay farmers for better fertilizer management. Carbon credits for fertilizer management are now available to U.S. corn farmers. This paper provides a framework for using this system around the world.

The research was funded by the National Science Foundation, the Department of Energy's Great Lakes Bioenergy Research Center and the Electric Power Research Institute. Robertson's work also is funded in part by MSU AgBioresearch.

###

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.