[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
26-Jun-2014

[ | E-mail ] Share Share

Contact: Chris Bunting
c.j.bunting@leeds.ac.uk
44-113-343-2049
PLOS

'Big data' technique improves monitoring of kidney transplant patients

Press release from PLOS Computational Biology

A new data analysis technique could radically improve monitoring of kidney transplant patients, according to new research published this week in PLOS Computational Biology.

The research, carried out by a team comprising physicists, chemist and clinicians at the University of Leeds, provides a method for making sense out of the huge number of clues about a kidney transplant patient's prognosis contained in their blood.

By applying a sophisticated "big data" analysis to the samples, scientists were able to process hundreds of thousands of variables into a single parameter to indicate how a kidney transplant was faring. This allowed them to predict poor function of a kidney after only two days in cases that may not have been previously detected as failing until weeks after transplant.

These extra few days are vital in the early stages after transplant and would give doctors a better chance to intervene to save the transplant and improve patient recovery periods. In some cases, the team were able to predict failure from patients' blood samples taken before the transplant operation.

Dr Sergei Krivov, in the University of Leeds' Astbury Center, said: "If you put a blood sample through Nuclear Magnetic Resonance analysis you get data down to the molecular level. You can identify chemical fingerprints left behind by specific cellular processes and you get a very large number of different parameters in those samples that vary with the outcome for a patient.

"These are vital clues. But, if you have got thousands of variables all moving in different ways in a complex system, how does a doctor bring all that information together and decide what to do? It is not possible to do this with the human mind; there are just too many variables. We have to do it with computers and find a way to weigh those variables and produce an intelligible output describing where, overall, the patient is heading."

The study, which analysed data from daily blood samples from 18 patients immediately before and in a week-long period after kidney transplants, showed that it was possible to pick out pieces of information that varied with the overall likelihood of a patient either rejecting a kidney or recovering kidney function.

Given enough data, the technique could even be used to quantify very complex and extended processes affecting the whole population.

###

All works published in PLOS Computational Biology are open access, which means that everything is immediately and freely available. Use this URL in your coverage to provide readers access to the paper upon publication: http://www.ploscompbiol.org/article/info:doi/pcbi.1003685

Press-only preview: http://www.plos.org/wp-content/uploads/2014/06/plcb-10-06-krivov.pdf

Contact:

Dr Sergei Krivov is available for interview.
Contact: Chris Bunting, Senior Press Officer, University of Leeds.
Phone: +44 113 343 2049
Email c.j.bunting@leeds.ac.uk

Citation: Krivov SV, Fenton H, Goldsmith PJ, Prasad RK, Fisher J, et al. (2014) Optimal Reaction Coordinate as a Biomarker for the Dynamics of Recovery from Kidney Transplant. PLoS Comput Biol 10(6): e1003685. doi:10.1371/journal.pcbi.1003685

Funding: SVK was supported by EPSRC grant EP/E500080/1. HF was supported by EPSRC grants 2004/05-EP/548622/1, 2005/06-EP/C512855/1, 2006/07-EP/E501869/1, 2007/08-EP/F500033/1, 2008/09-EP/G500010/1 http://www.epsrc.ac.uk. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

About PLOS Computational Biology

PLOS Computational Biology (http://www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLOS Computational Biology are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained. For more information, visit http://www.ploscompbiol.org, and follow @PLOSCompBiol on Twitter.

About the Public Library of Science

PLOS is a nonprofit organization that accelerates progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.