[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
22-Jun-2014

[ | E-mail ] Share Share

Contact: Susan Gammon, Ph.D.
sgammon@sanfordburnham.org
858-795-5012
Sanford-Burnham Medical Research Institute

Researchers discover new genes that promote brain cancer

Study identifies 2 novel oncogenes that cause childhood brain cancer when activated

La Jolla, Calif., June 22, 2014, A new collaborative study carried out by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham), UC San Diego, the German Cancer Research Center, the University of Heidelberg (Germany), and 33 other research institutions has identified two oncogenes, called GFI1 and GFI1B, that drive the development of medulloblastoma, the most common malignant brain tumor in children.

The findings, published June 22 in Nature, suggest that GFI1 and GFI1B are worthy gene candidates for molecular-targeted therapy.

"Using state-of-the-art technologies to survey the genomes of tumors derived from medulloblastoma patients, we have identified new oncogenes that drive the growth of a considerable proportion of Group 3 and 4 medulloblastomas. Patients with Group 3 and 4 tumors have the poorest outcomes and the fewest therapeutic options of all medulloblastoma patients," said Robert Wechsler-Reya, Ph.D., director of the Tumor Initiation and Maintenance Program at Sanford-Burnham, and co-senior author of the paper.

Current therapy for patients with medulloblastoma includes surgery, radiation, and high-dose chemotherapy. Although these therapies have a significant impact on tumor growth, many children ultimately relapse and die of the disease. Moreover, survivors suffer profound long-term side effects—including cognitive deficits and increased susceptibility to other cancers—as a result of the aggressive treatment.

"Going forward, we expect that the genetic profiles of medulloblastoma tumors will lead to markers that allow us to adjust a patient's therapy to target the genes that are actually driving the growth of the tumor. Our findings are promising in that they may ultimately lead to genetically informed clinical trials of new agents that target the genetic variations we discovered," said Wechsler-Reya.

Hijacking gene enhancers

The study also revealed how the oncogenes—inactive in normal healthy brains—become activated in medulloblastoma by "hijacking" unrelated DNA elements called "enhancers." Enhancers are short regions of DNA that activate genes, and there are hundreds of thousands of them in the human genome.

"Chromosome rearrangements that merge oncogenes with enhancers have been observed in lymphoid cancers, such as non-Hodgkin's lymphoma," said Wechsler-Reya. "But this is the first report of this phenomenon in brain tumors."

Chromosome rearrangements occur when segments of the DNA double helix are deleted, amplified, or swap positions—disrupting the normal order and sequence of genes.

"Gene rearrangements that activate oncogenes have broad-reaching implications for cancer genomics," said Paul Northcott, Ph.D., senior researcher at the German Cancer Research Center and co-first author of the study. "It will be interesting to re-examine the genomes of other cancers using today's sophisticated analytical tools to see if the enhancer hijacking process of activating oncogenes is broader than we currently understand.

"Moreover, these rearrangements leading to GFI1 and GFI1B activation open up promising new avenues for the treatment of medulloblastoma patients, as novel therapies specifically targeting enhancers are currently making their way into clinical trials for other cancers. Targeting enhancers bypasses some of the caveats associated with the direct targeting of oncogenes themselves, which can be notoriously difficult to inhibit," added Northcott.

###

This work was principally supported by the National Cancer Institute (R01 CA122759), the California Institute for Regenerative Medicine (CIRM LA1-01747), and the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by the German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants 01KU1201A, MedSys 0315416C, and NGFNplus 01GS0883).

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration and stem cells, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs 1,200 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at sanfordburnham.org.

Sanford-Burnham can also be found on Facebook at facebook.com/sanfordburnham and on Twitter @sanfordburnham.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.