[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
9-Jul-2014

[ | E-mail ] Share Share

Contact: Vickie Chachere
vchachere@usf.edu
813-974-6251
University of South Florida (USF Health)

USF study: Amphibians can acquire resistance to deadly fungus

New insight into how frogs develop immunity against fungal disease could aid conservation efforts

IMAGE: Cuban tree frogs are among the amphibians affected by the deadly chytrid fungus implicated in global amphibian population declines.

Click here for more information.

Tampa, Fla. (July 9, 2014) Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing population declines of amphibians, bats, corals, bees and snakes. New research from the University of South Florida published in the prestigious journal Nature reveals that amphibians can acquire behavioral or immunological resistance to a deadly chytrid fungus implicated in global amphibian population declines.

"Acquired resistance is important because it is the basis of vaccination campaigns based on 'herd immunity', where immunization of a subset of individuals protects all from a pathogen," said Jason Rohr, an associate professor of integrative biology who led the research team with Taegan McMahon, a USF alumnus who is now an assistant professor of biology at the University of Tampa.

One experiment in the study revealed that after just one exposure to the chytrid fungus, frogs learned to avoid the deadly pathogen.

In subsequent experiments in which frogs could not avoid the fungus, frog immune responses improved with each fungal exposure and infection clearance, significantly reducing fungal growth and increasing the likelihood that the frogs survived subsequent chytrid infections.

"The amphibian chytrid fungus suppresses immune responses of amphibian hosts, so many researchers doubted that amphibians could acquire effective immunity against this pathogen," Rohr said. "However, our results suggest that amphibians can acquire immunological resistance that overcomes chytrid-induced immunosuppression and increases their survival."

Rohr also noted that "variation in the degree of acquired resistance might partly explain why fungal pathogens cause extinctions of some animal populations but not others."

"The discovery of immunological resistance to this pathogenic fungus is an exciting fundamental breakthrough that offers hope, and a critical tool for dealing with the global epidemic affecting wild amphibian populations," says Liz Blood, program officer in the National Science Foundation's Directorate for Biological Sciences, which funded the research through its MacroSystems Biology Program.

Conservationists have collected hundreds of amphibian species threatened by the fungus and are maintaining them in captivity with the hope to someday re-establish them in the wild. However, reintroduction efforts so far have failed because of the persistence of the fungus at collection sites.

"A particularly exciting result from our research was that amphibian exposure to dead chytrid induced a similar magnitude of acquired resistance as exposure to the live fungus," McMahon said.

"This suggests that exposure of waterbodies or captive-bred amphibians to dead chytrid or chytrid antigens might offer a practical way to protect chytrid-nave amphibian populations and to facilitate the reintroduction of captive-bred amphibians to locations in the wild where the fungus persists."

"Immune responses to fungi are similar across vertebrates and many animals are capable of learning to avoid natural enemies," Rohr emphasized. "Hence, our findings offer hope that amphibians and other wild animals threatened by fungal pathogens - such as bats, bees, and snakes - might be capable of acquiring resistance to fungi and thus might be rescued by management approaches based on herd immunity."

Rohr cautioned, however, that "although this approach is promising, more research is needed to determine the success of this strategy."

###

The study's team included: USF researchers Brittany Sears, Scott M. Bressler, Jenise Brown, Kaitlin Deutsch, Neal Halstead, Garrett Lentz, Nadia Tenouri, Suzanne Young, David J. Civitello and Nicole Ortega.; Matthew D. Vensky of Allegheny College; J. Scott Fites, Laura K. Reinert and Louise A. Rollins-Smith of Vanderbilt University; and Thomas R. Raffel of Oakland University.

The University of South Florida is a high-impact, global research university dedicated to student success. USF is a Top 50 research university among both public and private institutions nationwide in total research expenditures, according to the National Science Foundation. Serving nearly 48,000 students, the USF System has an annual budget of $1.5 billion and an annual economic impact of $4.4 billion. USF is a member of the American Athletic Conference.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.