News Release

Non-adaptive evolution in a cicada's gut

Peer-Reviewed Publication

CIFAR

Tettigades Cicada

image: This is a cicada of the genus Tettigades, which are common to South America. Researchers found that one of its bacterial symbionts had split into two species. view more 

Credit: Photo by Juan Emilio Cucumides Carreño

Organisms in a symbiotic relationship will often shed genes as they come to rely on the other organism for crucial functions. But now researchers have uncovered an unusual event in which a bacterium that lives in a type of cicada split into two species, doubling the number of organisms required for the symbiosis to survive.

Cicadas of the genus Tettigades feed only on sap they suck out of plants. To create some of the essential amino acids they rely on two bacterial helpers — Candidatus Hodgkinia cicadicola and Candidatus Sulcia muelleri — with which they have lived in symbiosis for millions of years.

At one time Tettigades cicadas and Hodgkinia might have been able to survive without each other, but as they evolved together, the bacterium shed genes that it no longer needed, leaving it with a very small genome of 169 genes in total.

CIFAR Associate John McCutcheon's lab at the University of Montana was sequencing the genome of species within this cicada when PhD student James Van Leuven discovered that at some point about 5 million years ago, one of the bacteria, Hodgkinia, had split into two separate species, both of which are now required by the cicadas. Their findings will appear online at Cell Aug. 28.

While the extra symbiont seems to make little functional difference to the cicadas' life, it leaves the insect reliant on double the species to create the same nutrients that only one could make before. The researchers argue the genetic split was non-adaptive, meaning it happened because of chance and had no clear benefit to the organism.

"For the insect, it is probably easier to deal with two symbionts than it is three," McCutcheon says.

The case appears to be one of the clearest examples researchers have found yet of non-adaptive evolution, although selection still plays a role in maintaining the original gene set. The research illustrates the complex factors that drive and refine the evolution of all life, from insects to organelles such as mitochondria, which are tied closely to human disease.

"It may be a window into these sorts of fundamental processes," McCutcheon says.

McCutcheon says his involvement with CIFAR's program in Integrated Microbial Biodiversity and discussions with other CIFAR fellows had a major influence on this research.

"Without my involvement in CIFAR, this paper would either be dull or it wouldn't exist," he says.

"Members of the Integrated Microbial Biodiversity program have made me think hard about my work and about how it fits into the larger evolutionary picture."

###

About CIFAR

CIFAR creates knowledge that will transform our world. The Institute brings together outstanding researchers to work in global networks that address some of the most important questions our world faces today. Our networks help support the growth of research leaders and are catalysts for change in business, government and society.

Established in 1982, CIFAR is a Canadian-based, global organization, comprised of nearly 350 fellows, scholars and advisors from more than 100 institutions in 16 countries. CIFAR partners with the Government of Canada, provincial governments, individuals, foundations, corporations and research institutions to extend our impact in the world.

CIFAR's Integrated Microbial Biodiversity program explores the diverse microbial world that surrounds and permeates human life. Fellows are transforming human understanding of biodiversity, and changing approaches to medicine and health, environmental sustainability and evolutionary biology itself.

Contacts:

Lindsay Jolivet
Writer & Media Relations Specialist
Canadian Institute for Advanced Research
lindsay.jolivet@cifar.ca
(416) 971-4871

John McCutcheon
CIFAR Associate
University of Montana
john.mccutcheon@umontana.edu
(406) 243-6071


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.