[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
7-Aug-2014

[ | E-mail ] Share Share

Contact: Andreas Bäumler
ajbaumler@ucdavis.edu
PLOS

The typhoid fever pathogen uses a cloaking mechanism to evade neutrophil neutralization

IMAGE: This image depicts a single cell experiment in which a human neutrophil was picked up by a micropipette (top panel) and brought into close contact with S. Typhimurium cells immobilized...

Click here for more information.

Typhoid fever is caused by systemic (body-wide) infection with Salmonella enterica Typhi. In contrast, infection with the closely related bacterium Salmonella enterica Thyphimurium is usually limited to the gut and causes less serious diarrheal disease. Research published on August 7th in PLOS Pathogens comparing the two pathogens reveals how S. Typhi avoids recognition and elimination by patrolling immune cells called neutrophils, allowing it to disseminate throughout the patient's body.

Neutrophils track down microbial invaders and gobble them up. To investigate why some Salmonella strains trigger a neutrophil response but others don't, researchers led by Volkmar Heinrich and Andreas Bäumler from the University of California at Davis, USA, designed a way to directly observe the interaction between a single bacterium and a single neutrophil cell. They immobilized the bacterium with laser tweezers in close proximity to a neutrophil held by a tiny glass pipette.

A close encounter with S. Typhimurium provokes an obvious response by the neutrophil: the initially round immune cell bulges out towards the bacterium, getting ready to make contact and ingest the intruder. Proximity to S. Typhi, in contrast, stimulates no visible changes. This differential response depends on a "natural" immune response environment, that is, on the presence of human blood serum.

To get at the signals revealing the presence of S. Typhimurium—which are somehow absent in (or obstructed by) the presence of S. Typhi—the researchers used a second experimental set up. In a so-called Boyden chamber, either bacteria or chemicals that attract neutrophils are concentrated in a bottom compartment that is filled with human blood serum. Neutrophils are initially concentrated in the upper compartment, and their migration to the bottom is quantified.

As expected, the presence of S. Typhimurium caused migration of neutrophils to the bottom compartment. This response was blocked by a drug that inhibits the complement system, a part of the non-specific immune system present in human blood. As for the difference between S. Typhimurium and S. Typhi, the researchers could show that a particular part of the outer layer of S. Typhi—the so-called Vi capsular polysaccharide—was responsible for inhibiting the complement-dependent attraction of neutrophils. When they generated S. Typhi lacking the Vi capsular polysaccharide and tested them in both experimental settings, they found that these behaved just like S. Typhimurium, i.e. evoked the "reach-out" response in pipette-held neutrophils and, in the Boyden chamber, elicited migration of neutrophils to the bottom compartment.

Because the researchers found that mouse neutrophils behaved just like human neutrophils in these experiments, they then tested whether they could recapitulate the difference "in vivo", i.e. in mice infected with both intact S. Typhi and with S. Typhi lacking the Vi capsular polysaccharide. Indeed, in these mice, neutrophils were found preferentially in association with the latter bacteria. Finally, in mice with a defective complement system, there was no visible preference of neutrophils for either of the two types of S. Typhi.

The data, including striking videos*, the researchers say, "illustrate that the Vi capsular polysaccharide can act as a "cloaking device" that makes S. Typhi practically "invisible" to neutrophils". Their results, they add, "suggest that one of the differences between [milder] gastroenteritis and [dangerous] typhoid fever is that the pathogen causing the latter disease evades neutrophil chemotaxis".

###

*Please e-mail plospathogens@plos.org for a copy of the videos that will publish with this article.

Please contact plospathogens@plos.org if you would like more information about our content and specific topics of interest.

All works published in PLOS Pathogens are open access, which means that everything is immediately and freely available. Use this URL in your coverage to provide readers access to the paper upon publication: http://dx.plos.org/10.1371/journal.ppat.1004306 (Link goes live upon article publication)

Contact:

Volkmar Heinrich
e-mail: vheinrich@ucdavis.edu
phone: +1.530.754.6644

Andreas Bäumler
e-mail: ajbaumler@ucdavis.edu
phone: +1.530.754.7225

Authors and Affiliations:

Tamding Wangdi, University of California Davis, USA

Cheng-Yuk Lee, University of California Davis, USA

Alanna M. Spees, University of California Davis, USA

Chenzhou Yu, University of California Davis, USA

Dawn D. Kingsbury, University of California Davis, USA

Sebastian E. Winter, University of California Davis, USA

Christine J. Hastey, University of California Davis, USA

R. Paul Wilson, University of California Davis, USA

Volkmar Heinrich, University of California Davis, USA

Andreas J. Bäumler, University of California Davis, USA

Funding: This project was supported by Public Health Service grant AI044170 to AJB. We would also like to acknowledge the NIH Facilities Infrastructure Grant 1-C06-RR12088-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Wangdi T, Lee C-Y, Spees AM, Yu C, Kingsbury DD, et al. (2014) The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis. PLoS Pathog 10(8): e1004306. doi:10.1371/journal.ppat.1004306



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.