News Release

'Smart material' chin strap harvests energy from chewing

Peer-Reviewed Publication

IOP Publishing

Energy Harvesting Chin Strap

image: This is the experimental set up of an energy harvesting chin strap. view more 

Credit: Smart Materials and Structures/IOP Publishing

A chin strap that can harvest energy from jaw movements has been created by a group of researchers in Canada.

It is hoped that the device can generate electricity from eating, chewing and talking, and power a number of small-scale implantable or wearable electronic devices, such as hearing aids, cochlear implants, electronic hearing protectors and communication devices.

The first results of the device's performance have been published today, 17 September, in IOP Publishing's journal Smart Materials and Structures.

Jaw movements have proved to be one of the most promising candidates for generating electricity from human body movements, with researchers estimating that an average of around 7 mW of power could be generated from chewing during meals alone.

To harvest this energy, the study's researchers, from Sonomax-ÉTS Industrial Research Chair in In-ear Technologies (CRITIAS) at École de technologie supérieure (ÉTS) in Montreal, Canada, created a chin strap made from piezoelectric fiber composites (PFC).

PFC is a type of piezoelectric smart material that consists of integrated electrodes and an adhesive polymer matrix. The material is able to produce an electric charge when it stretches and is subjected to mechanical stress.

In their study, the researchers created an energy harvesting chin strap made from a single layer of PFC and attached it to a pair of ear muffs using a pair of elastic side straps. To ensure maximum performance, the chin strap was fitted snugly to the user, so when the user's jaw moved it caused the strap to stretch.

To test the performance of the device, the subject was asked to chew gum for 60 seconds whilst wearing the head-mounted device; at the same time the researchers recorded a number of different parameters.

The maximum amount of power that could be harvested from the jaw movements was around 18 µW, but taking into account the optimum set-up for the head-mounted device, the power output was around 10 µW.

Co-author of the study Aidin Delnavaz said: "Given that the average power available from chewing is around 7 mW, we still have a long way to go before we perfect the performance of the device.

"The power level we achieved is hardly sufficient for powering electrical devices at the moment; however, we can multiply the power output by adding more PFC layers to the chin strap. For example, 20 PFC layers, with a total thickness of 6 mm, would be able to power a 200 µW intelligent hearing protector."

One additional motivation for pursuing this area of research is the desire to curb the current dependency on batteries, which are not only expensive to replace but also extremely damaging to the environment if they are not disposed of properly.

"The only expensive part of the energy harvesting device is the single PFC layer, which costs around $20. Considering the price and short lifetime of batteries, we estimate that a self-powered hearing protector based on the proposed chin strap energy harvesting device will start to pay back the investment after three years of use," continued Delnavaz.

"Additionally, the device could substantially decrease the environmental impact of batteries and bring more comfort to users.

"We will now look at ways to increase the number of piezoelectric elements in the chin strap to supply the power that small electronic devices demand, and also develop an appropriate power management circuit so that a tiny, rechargeable battery can be integrated into the device."

###

From Wednesday 17 September, this paper can be downloaded from http://iopscience.iop.org/0964-1726/23/10/105020

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop: Tel: 0117 930 1032 E-mail: michael.bishop@iop.org For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer, michael.bishop@iop.org, with your name, organisation, address and a preferred username.

Flexible piezoelectric energy harvesting from jaw movements

3. The published version of the paper 'Flexible piezoelectric energy harvesting from jaw movements' (Delnavaz A and Voix J 2014 Smart Mater. Struct. 23 105020) will be freely available online from Wednesday 17 September. It will be available at http://iopscience.iop.org/0964-1726/23/10/105020.

Smart Materials and Structures

4. Smart Materials and Structures is dedicated to technical advances in smart materials, systems and structures, including materials, sensing and actuation, optics and electromagnetics, structures, control and information processing.

IOP Publishing

5. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute. Go to http://ioppublishing.org.

Access to Research

6. Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk

The Institute of Physics

6. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.