Public Release:  Brain protein influences how the brain manages stress; suggests new model of depression

Discovery of new molecular and behavioural connections may provide a foundation for the development of new treatments to combat some forms of depression

The Mount Sinai Hospital / Mount Sinai School of Medicine

The brain's ability to effectively deal with stress or to lack that ability and be more susceptible to depression, depends on a single protein type in each person's brain, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published November 12 in the journal Nature.

The Mount Sinai study findings challenge the current thinking about depression and the drugs currently used to treat the disorder.

"Our findings are distinct from serotonin and other neurotransmitters previously implicated in depression or resilience against it," says the study's lead investigator, Eric J. Nestler, MD, PhD, Nash Family Professor, Chair of the Department of Neuroscience and Director of the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. "These data provide a new pathway to find novel and potentially more effective antidepressants."

The protein involved in this new model of depression is beta-catenin (B-catenin), which is expressed throughout the brain and is known to have many biological roles. Using mouse models exposed to chronic social stress, Mount Sinai investigators discovered that it is the activity of the protein in the D2 neurons, a specific set of nerve cells (neurons) in the nucleus accumbens (NAc), the brain's reward and motivation center, which drives resiliency.

Specifically, the research team found that animals whose brains activated B-catenin were protected against stress, while those with inactive B-catenin developed signs of depression in their behavior. The study also showed suppression of this protein in brain tissue of depressed patients examined post mortem.

"Our human data are notable in that we show decreased activation of B-catenin in depressed humans, regardless of whether these individuals were on or off antidepressants at the time of death," says the study's co-lead investigator, Caroline Dias, an MD-PhD student at the Icahn School of Medicine at Mount Sinai. "This implies that the antidepressants were not adequately targeting this brain system."

In the study, researchers blocked B-catenin in the D2 brain cells in mice that had previously shown resilience to depression and found the animals became susceptible to stress. Conversely, activating B-catenin in stress mice bolstered their resilience to stress.

Nearly all nerve cells in the NAc brain region are called medium spiny neurons. These cells are divided into two types based on how they detect the neurotransmitter dopamine, which is important in regulating reward and motivation. One type of neuron detects dopamine with D1 receptors and the other with D2 receptors. The Mount Sinai data specifically implicate the D2 neurons in mediating deficits in reward and motivation that contribute to depression or enhancements that mediate resilience.

Examining the genes regulated by B-catenin, the team then traced the pathway that was engaged when B-catenin was activated in the D2 neurons and discovered a novel connection between the protein and Dicer1, an enzyme important in making microRNAs, small molecules which control gene expression.

"While we have identified some of the genes that are targeted, future studies will be key to see how these genes affect depression. Presumably, they are important in mediating the pro-resilient effects of the B-catenin-Dicer cascade," says Dr. Dias.

While the molecular underpinnings of depression have remained elusive despite decades of research, the new Mount Sinai study breaks new ground in understanding depression in three important ways. It is the first report that B-catenin is deficient in nucleus accumbens in human depression and mouse depression models; it is the first study to show that higher activity of B-catenin drives resilience and the first report demonstrating a strong connection between B-catenin and control of microRNA synthesis.

The findings also suggest that future therapy for depression could be aimed at bolstering resilience against stress.

"While most prior efforts in antidepressant drug discovery have focused on ways to undo the bad effects of stress, our findings provide a pathway to generate novel antidepressants that instead activate mechanisms of natural resilience," says Dr. Nestler.

###

This work was supported by grants from the National Institute of Mental Health and Hope for Depression Research Foundation.

Researchers from the University of Texas Southwestern, the Massachusetts Institute of Technology, Michigan State University, the UCLA College of Life Sciences, the University of Arizona College of Medicine and the Institut National de la Sante et de la Recherhe Medicale (INSERM) in Paris contributed to the study.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services--from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.