News Release

NIH grantees overcome hurdle to kill HIV-infected cells brought out of hiding

Technique could potentially become part of HIV cure strategy

Peer-Reviewed Publication

NIH/National Institute of Allergy and Infectious Diseases

A major obstacle to curing people of HIV infection is the way the virus hides, in a reservoir primarily of dormant immune cells called resting memory CD4+ T cells. One potential approach to curing HIV infection is to awaken these latent CD4+ T cells so they start making HIV proteins. This would alert the immune system that the cells are infected, and, in theory, generate an immune response that kills them. It has been unclear, however, whether typical immune mechanisms for killing virally infected cells would eliminate HIV-infected CD4+ T cells awakened from the HIV reservoir.

To answer this question, NIH grantee Robert F. Siliciano, M.D., Ph.D., of the Howard Hughes Medical Institute and the Johns Hopkins University School of Medicine, and colleagues extracted immune cells and reservoir-based HIV from 25 infected people to study in the laboratory and in mice. Ten of these people had started combination anti-HIV therapy early (within 3 months of infection) and 15 had started late (3 months or more post-infection). In the early-treatment group, scientists found that most of the HIV-infected CD4+ T-cells in the viral reservoirs were sensitive to detection by killer T cells, the immune cells that seek and destroy infected cells. By contrast, nearly all of the HIV that infected CD4+ T cells in the reservoirs of the late-treatment group had developed mutations that enabled the infected CD4+ T cells to escape detection by the killer T cells that typically dominate the immune response to HIV infection.

Despite this, the scientists discovered that most HIV-infected people in the late-treatment group also had other killer T cells that recognized parts of HIV that had not mutated, but these cells were ineffective at destroying their targets. To boost the killing capacity of these cells, the researchers stimulated them with a mixture of HIV protein fragments before exposing them to unmutated parts of the virus. The boosted cells effectively killed the HIV-infected cells in both the laboratory and mice altered to have human immune systems. This suggests that a therapeutic vaccine that similarly boosts the T-cell response to HIV could be part of a strategy for curing chronic HIV infection.

###

ARTICLE: K Deng et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature DOI: 10.1038/nature14053 (2015).

WHO: Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases, part of NIH, is available for comment.

CONTACT: To schedule interviews, please contact Laura S. Leifman, (301) 402-1663, laura.sivitz@nih.gov.

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.