News Release

Rice, ASU, Yale, UTEP win NSF engineering research center

NEWT Center will use nanotechnology to transform economics of water treatment

Grant and Award Announcement

Rice University

Nanotechnology Enabled Water Treatment Systems, or NEWT

image: NEWT will develop mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it. view more 

Credit: Rice University

A Rice University-led consortium of industry, university and government partners has been chosen to establish one of the National Science Foundation's (NSF) prestigious Engineering Research Centers in Houston to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it and make U.S. energy production more sustainable and cost-effective.

Nanotechnology Enabled Water Treatment Systems, or NEWT, is Houston's first NSF Engineering Research Center (ERC) and only the third in Texas in nearly 30 years. It is funded by a five-year, $18.5 million NSF grant that can be renewed for a potential term of 10 years. NEWT brings together experts from Rice, Arizona State University, Yale University and the University of Texas at El Paso (UTEP) to work with more than 30 partners, including Shell, Baker Hughes, UNESCO, the U.S. Army Corps of Engineers and NASA.

ERCs are interdisciplinary, multi-institutional centers that join academia, industry and government in partnership to produce both transformational technology and innovative-minded engineering graduates who are primed to lead the global economy. ERCs often become self-sustaining and typically leverage more than $40 million in federal and industry research funding during their first decade.

"The importance of clean water to global health and economic development simply cannot be overstated," said NEWT Director Pedro Alvarez, the grant's principal investigator. "We envision using technology and advanced materials to provide clean water to millions of people who lack it and to enable energy production in the United States to be more cost-effective and more sustainable in regard to its water footprint."

Houston-area Congressman John Culberson, R-Texas, chair of the House Subcommittee on Commerce, Justice and Science, said, "Technology is a key enabler for the energy industry, and NEWT is ideally located at Rice, in the heart of the world's energy capital, where it can partner with industry to ensure that the United States remains a leading energy producer."

Alvarez, Rice's George R. Brown Professor of Civil and Environmental Engineering and professor of chemistry, materials science and nanoengineering, said treated water is often unavailable in rural areas and low-resource communities that cannot afford large treatment plants or the miles of underground pipes to deliver water. Moreover, large-scale treatment and distribution uses a great deal of energy. "About 25 percent of the energy bill for a typical city is associated with the cost of moving water," he said.

NEWT Deputy Director Paul Westerhoff said the new modular water-treatment systems, which will be small enough to fit in the back of a tractor-trailer, will use nanoengineered catalysts, membranes and light-activated materials to change the economics of water treatment.

"NEWT's vision goes well beyond today's technology," said Westerhoff, vice provost of academic research at ASU and co-principal investigator on the NSF grant. "We've set a path for transformative new technology that will move water treatment from a predominantly chemical treatment process to more efficient catalytic and physical processes that exploit solar energy and generate less waste."

Co-principal investigator and NEWT Associate Director for Research Qilin Li, the leader of NEWT's advanced treatment test beds at Rice, said the system's technology will be useful in places where water and power infrastructure does not exist.

"The NEWT drinking water system will be able to produce drinking water from any source, including pond water, seawater and floodwater, using solar energy and even under cloudy conditions," said Li, associate professor of civil and environmental engineering, chemical and biomolecular engineering, and of materials science and nanoengineering at Rice. "The modular treatment units will be easy to configure and reconfigure to meet desired water-quality levels. The system will include components that target suspended solids, microbes, dissolved contaminants and salts, and it will have the ability to treat a variety of industrial wastewater according to the industry's need for discharge or reuse."

NEWT will focus on applications for humanitarian emergency response, rural water systems and wastewater treatment and reuse at remote sites, including both onshore and offshore drilling platforms for oil and gas exploration.

Yale's Menachem "Meny" Elimelech, co-principal investigator and lead researcher for membrane processes, said NEWT's innovative enabling technologies are founded on rigorous basic research into nanomaterials, membrane dynamics, photonics, scaling, paramagnetism and more.

"Our modular water-treatment systems will use a combination of component technologies," said Elimelech, Yale's Roberto C. Goizueta Professor of Environmental and Chemical Engineering. "For example, we expect to use high-permeability membranes that resist fouling; engineered nanomaterials that can be used for membrane surface self-cleaning and biofilm control; capacitive deionization to eliminate scaly mineral deposits; and reusable magnetic nanoparticles that can soak up pollutants like a sponge."

UTEP's Jorge Gardea-Torresdey, co-principal investigator and co-leader of NEWT's safety and sustainability effort, said the rapid development of engineered nanomaterials has brought NEWT's transformative vision within reach.

"Treating water using fewer chemicals and less energy is crucial in this day and age," said Gardea-Torresdey, UTEP's Dudley Professor of Chemistry and Environmental Science and Engineering. "The exceptional properties of engineered nanomaterials will enable us to do this safely and effectively."

Alvarez said another significant research thrust in nanophotonics will be headed by Rice co-principal investigator Naomi Halas, the inventor of "solar steam" technology, and co-led by ASU's Mary Laura Lind.

"More than half of the cost associated with desalination of water comes from energy," said Halas, Rice's Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering. "We are working to develop several supporting technologies for NEWT, including nanophotonics-enabled direct solar membrane distillation for low-energy desalination."

Rice's Michael Wong, Yale's Jaehong Kim and UTEP's Dino Villagran will collaborate in efforts to develop novel multifunctional materials such as superior sorbents and catalysts, and Yale's Julie Zimmerman will co-lead cross-cutting efforts in safety and sustainability. Rice's Roland Smith will lead a comprehensive diversity program that aims to attract more women and underrepresented minority students and faculty, and Rice's Brad Burke will head up innovation and commercialization efforts with private partners. Rice's Rebecca Richards-Kortum will lead an innovative educational program that incorporates some of the "experiential learning" techniques she developed for the award-winning undergraduate research programs at Rice 360º: Institute for Global Health Technologies, and Rice's Carolyn Nichol will lead the K-12 education efforts.

Alvarez said NEWT's goal is to attract industry funding and become self-sufficient within 10 years. Toward that end, he said NEWT was careful to select industrial partners from every part of the water market, including equipment makers and vendors, system operators, industrial service firms and others.

NEWT is one of three new ERCs announced by the NSF today in Washington. They join 16 existing centers that are still receiving federal support, including Texas' only other active ERC, the University of Texas at Austin's NASCENT, as well as the other active center in which Rice is a partner, Princeton University's MIRTHE.

Alvarez credited Culberson and the Texas Railroad Commission for helping facilitate partnerships that were crucial for NEWT. He said the consortium's bid to land the NSF grant was also made possible by seed funding from Rice's Energy and Environment Initiative, a sweeping institutional initiative to engage Rice faculty from all disciplines in creating sustainable, transformative energy technologies.

"Rice's Energy and Environment Initiative was instrumental in developing a competitive proposal, in facilitating a team-building effort and in facilitating contacts with industry to get the necessary buy-in for our vision," Alvarez said.

###

NEWT Fact Sheet: http://news.rice.edu/wp-content/uploads/2015/08/NEWT-ERC-factsheet.pdf

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.