News Release

Splicing alterations that cause resistance to CD19 CAR T-cell therapy identified

Peer-Reviewed Publication

American Association for Cancer Research

Bottom Line: Resistance to CD19 CAR T-cell therapy, a type of immunotherapy that yields long-lasting remissions in many patients with B-cell leukemia, can be caused by CD19 splicing alterations, leading to loss of certain parts of the CD19 protein that are recognized by the CAR T cells.

Journal in Which the Study was Published: Cancer Discovery, a journal of the American Association for Cancer Research

Author: Andrei Thomas-Tikhonenko, PhD, professor of pathology and laboratory medicine and pediatrics at the Perelman School of Medicine at the University of Pennsylvania, and chief of the Division of Experimental Pathology at the Children's Hospital of Philadelphia

Background: "Developed by Carl June, MD, and his colleagues at the University of Pennsylvania, CTL019 [CD19 CAR T-cell therapy] is based on the idea that the patient's own immune cells can be taken out of the body, grown in petri dishes, and altered in such a way that when returned to the bloodstream, they would kill several types of blood cancers, such as leukemias and lymphomas," said Thomas-Tikhonenko.

Although this therapy has resulted in exceptional treatment outcomes in clinical trials for pediatric patients with aggressive leukemias, about 10 to 20 percent of them see their leukemias come back after a few months, Thomas-Tikhonenko added. "Some of them can be successfully retreated, but in others a more pernicious kind of leukemia may emerge, which no longer responds to CTL019. This is because for CTL019 to work, leukemic cells need to present on their surface the target protein called CD19. In resistant leukemias, it just didn't seem to be there," he explained.

How the Study Was Conducted: To understand the mechanism of resistance, Thomas-Tikhonenko; a senior scientist from his lab, Elena Sotillo, PhD; and colleagues studied multiple tumor samples from four pediatric patients with leukemia collected before they were treated with CTL019 and/or after they developed resistance to therapy.

Results: First, the researchers found that in some cases, one of the two copies of the gene coding for CD19 and located on chromosome 16 was deleted, and the other copy was damaged as a result of mutations in coding areas of the CD19 gene, most frequently in exon 2. However, they also learned that in the very same cases, by a process known as alternative splicing, exons 2, 5, and 6 were frequently skipped, making mutations in exon 2 largely irrelevant.

The researchers then conducted a series of experiments to understand the impact gene splicing might have on the production of CD19 protein. They found that the deletion of exons 5 and 6 resulted in premature termination of the protein and that the deletion of exon 2 resulted in the production of a modified version of CD19, which was more stable than its standard version. The shortened protein was functional and could perform many of the tasks that CD19 is known to handle.

The importance of exon skipping for resistance to CTL019 cannot be overstated, Thomas-Tikhonenko explained. "Without exons 5 and 6, the CD19 protein has no way of being retained on the cell surface. The case of missing exon 2 is more complex. Although the resultant protein can make it to the cell surface, albeit not very efficiently, it can no longer be recognized by CTL019," he said.

Designing new immunotherapeutics that can recognize the shortened version of CD19 is one approach to tackle resistance to CTL019, he added.

Author Comment: Thomas-Tikhonenko said,"Our goal was to figure out how the CD19 protein manages to vanish and whether it is gone for good or whether it could, under certain circumstances, be coaxed back. Our initial finding from this study was that in most cases the CD19 genetic code was not irretrievably lost. We also discovered that the CD19 protein was still being made, but as a shorter version, which escapes detection by the immune system."

"I think there are several lessons to be learned from our work. First, alternative splicing could be a potent built-in mechanism of resistance, and it might be better to target proteins that, unlike CD19, are not prone to exon skipping. Second, it might be important to preselect patients for CTL019 and similar therapies and make sure that the alternatively spliced CD19 variants are not already present in their leukemias. If they are, resistance could develop very quickly. Third, patients, too, can benefit from this information, because it would allow them to be matched with the best possible treatments, which is what precision medicine is all about," Thomas-Tikhonenko said.

"The most rewarding part of leading this study was to assemble in one room, on a monthly basis, great scientists coming from very different backgrounds and watch them find a common language--that of translational science," he added.

###

Study Limitations: A limitation of this study is the relatively small number of samples analyzed thus far, which might have prevented the researchers from identifying additional mechanisms of resistance, he added.

Funding & Disclosures: This study was funded by the V Foundation for Cancer Research, William Lawrence and Blanche Hughes Foundation, Leukemia and Lymphoma Society, Alex's Lemonade Stand Foundation, National Institutes of Health, and the Stand Up To Cancer-St. Baldrick's Foundation Pediatric Dream Team Translational Research Grant. Thomas-Tikhonenko declares no conflicts of interest.

To interview Andrei Thomas-Tikhonenko, contact Julia Gunther at julia.gunther@aacr.org or 215-446-6896.

Follow us: Cancer Research Catalyst http://blog.aacr.org; Twitter @AACR; and Facebook http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 35,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and patient advocates residing in 101 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 30 conferences and educational workshops, the largest of which is the AACR Annual Meeting with almost 19,300 attendees. In addition, the AACR publishes eight prestigious, peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the Scientific Partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual investigator grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and other policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.