News Release

Fresh insight into rheumatoid arthritis offers hope for transforming patient care

Peer-Reviewed Publication

Cardiff University

Scientists have discovered what they believe has the potential to prevent the onset of an aggressive and hard-to-treat form of rheumatoid arthritis - a condition that affects 700,000 adults in the UK.

Published in the Journal of Experimental Medicine, a team of immunologists from Cardiff University tread new ground in describing how an immune system protein -- interleukin-27 -- regulates the inflammatory process in lymphoid-rich rheumatoid arthritis, which causes the characteristic symptoms of swollen and painful joints.

This form of the disease, a long-term and disabling condition, accounts for up to 40% of diagnoses. Currently, an estimated two in every five patients with the disease do not respond to existing treatment and so the disease can often be problematic to treat.

The Cardiff team have marked a first in being able to explain how this variant of the disease develops. To demonstrate this they used experimental models of arthritis involving mice, cells and tissue biopsies taken from patients with early symptoms of the condition, using a novel ultrasound technique.

Understanding this process, they say, will enable doctors to divide patients into different sub-groups based on the often greatly varying patterns of disease, which is influenced by how much interleukin-27 is present in each patient's joints.

Which disease sub-group a patient falls in to will inform the course of therapy they will receive, meaning a more tailored approach to treating their condition, offering them a much better chance of overcoming it.

The researchers also anticipate that their identification of interleukin-27 involvement in this specific disease context will kick-start the search for new drugs that manipulate the pathways controlled by this factor. Dr. Gareth Jones, from Cardiff University School of Medicine's Institute of Infection & Immunity, said:

"In all forms of rheumatoid arthritis, it is widely understood that early intervention offers the best chance for clinical remission. The sooner treatment begins, the more effective the therapeutic response is likely to be.

"The key is identifying which drug is best suited for an individual patient. Making the correct treatment decisions, sufficiently early in the disease process will improve disease outcome, enhance a patients wellbeing and overall quality of life.

"Our research is identifying crucial pathways and mechanisms that allow us to distinguish between different sub-types of rheumatoid arthritis, using experimental models that mirror human forms of the disease. Agents that manipulate the activities of these pathways may also serve as potential therapies for future development."

Professor Christopher Buckley, a researcher from the Rheumatology Research Group at the University of Birmingham, said: "The potential of interleukin-27 as a marker to stratify patients with RA into different groups is a very important discovery that will help transform our ability to use a more personalized approach in the management of patients with the most aggressive form of the disease.

"Furthermore, identifying interleukin-27 as a bio-marker of the type of rheumatoid arthritis in which lymphoid tissue forms in the synovium, suggests that targeting this cytokine might be beneficial."

Rheumatoid arthritis affects an estimated one per cent of the world's population and there are 20,000 new diagnoses every year in the UK alone. Each year the NHS spends £560M on biological drug treatments to mitigate its effect.

The research is funded by Arthritis Research UK.

###

For further information please contact:
Tomas Llewelyn Barrett Public Relations Cardiff University
Tel: 029 20 875 596
E-mail: BarrettTL1@cardiff.ac.uk
Mobile: 07950960968

Cardiff University Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, University Chancellor Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning. Cardiff's flagship Research Institutes are offering radical new approaches to pressing global problems. http://www.cardiff.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.