News Release

Targeted therapy for gastric cancer possible

Genomic fingerprint can highlight which breast, ovarian, pancreatic and gastric cancers are likely to respond to treatment

Peer-Reviewed Publication

Wellcome Trust Sanger Institute

Gastric cancer, otherwise known as stomach cancer, does not respond well to existing treatments and it is currently the third leading cause of cancer death in the world (after lung and liver cancer). Researchers have discovered that certain drugs, currently used to treat breast, ovarian and pancreatic cancers, could also be used to treat certain gastric cancers with a particular pattern of mutations (genomic molecular fingerprint).

Recent research has shown that a specific genomic molecular fingerprint, called signature 3, is associated with cells that have defective DNA repair mechanisms, for example due to faulty BRCA1 or BRCA2 genes which are linked with breast cancer. Cancer cells harbouring signature 3 have defects that stop them from efficiently repairing damage to their DNA. Due to their inability to repair DNA damage, these cells become vulnerable to platinum drugs and PARP inhibitor drugs, both of which attack DNA, causing it to break. Since the DNA damage cannot then be repaired, the cancer cell dies.

Signature 3 could therefore predict which cancers would be likely to respond to particular drug therapies. Initially found only in some breast, ovarian and pancreatic cancers, signature 3 may be present in other human cancers, and researchers in this latest study aimed to find out which other cancers harboured this clue to drug vulnerability.

"We analysed the cancer genomes of 10,250 patients, performing a large-scale computational screen across 36 different types of tumours, looking for the pattern of Signature 3 in each sample. Not only did we confirm the presence of signature 3 in a significant percentage of breast, ovarian, and pancreatic cancers, we also found this molecular fingerprint in approximately 10% of stomach cancers," said Dr Ludmil Alexandrov, corresponding author and Oppenheimer Fellow at Los Alamos National Laboratory in the USA. "This subset of stomach cancer is likely to have a defective DNA break-repair mechanism, and could therefore be susceptible to existing treatments such as platinum drugs or PARP inhibitor drugs."

In addition to discovering the pattern of signature 3 in gastric cancer, the study quantified its occurrence in other cancer types. It showed that 30% of ovarian, 27% of breast and 8% of pancreatic cancers exhibit this molecular fingerprint, a higher percentage than originally thought. Previous research using whole genome sequencing data showed that pancreatic cancers harbouring the signature 3 fingerprint responded very well to platinum therapy. This suggests that the presence of signature 3 could be used as a biomarker to guide targeted therapy for not just some gastric cancers, but also for breast, ovarian and pancreatic cancers.

Previous research has shown the importance of two genes, BRCA1 and BRCA2 to breast and ovarian cancer and currently, clinicians target platinum therapy or PARP inhibitor drugs towards breast and ovarian cancer patients who have mutations in their BRCA1 and BRCA2 genes. However, this study shows that these two genes are only part of the story.

"While all the patients with BRCA1 and BRCA2 mutations show this signature 3 fingerprint, there are also many patients who have signature 3 but don't have mutations in BRCA1 and BRCA2. By focusing exclusively on those two genes, clinicians may be missing many cancer patients with the genomic signature 3 who could benefit from PARP inhibitor drugs or platinum therapy." Says Professor Suet Yi Leung, Chair of Gastrointestinal Cancer Genetics and Genomics from the University of Hong Kong "Even just for breast cancer, you could potentially double the population size that could be treated with this therapy."

PARP inhibitor drugs shut down a specific DNA repair enzyme, poly ADP ribose polymerase, and because they are more targeted, they cause far fewer side effects than platinum drugs. Olaparib (trade name Lynparza) is the latest PARP inhibitor drug to be licenced for use against ovarian cancer, but using Signature 3 as a marker, this and future PARP inhibitor drugs could be used to treat other cancer types such as gastric cancers. This would allow doctors to treat more patients, more effectively.

So far, this has only been shown in a laboratory setting using genomics. The next steps would be to clinically test these therapies to see if patients with cancers that have the signature 3 molecular fingerprint really do respond as hoped to these treatments. It takes many years of research to launch a new drug as not only does any new treatment have to be effective, it also has to be proven to be safe in humans. However, PARP inhibitors are already available and safety tested, which could speed up the process of approving their use for other cancers.

"This is an extremely exciting finding which shows the importance of genomic sequencing for personalised healthcare in the future." says Professor Michael Stratton, corresponding author and Director of the Wellcome Trust Sanger Institute. "In years to come, routine genomic analysis of cancers could show which have the signature 3 fingerprint and inform and transform treatment of thousands of patients with these specific breast, ovarian, pancreatic and gastric cancers."

###

Notes to Editors

Publications details

Alexandrov LB et al., (2015) A mutational signature in gastric cancer suggests therapeutic strategies. Nature Communications 2015. DOI:10.1038/ncomms9683

Participating Centres

Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, United Kingdom, Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos 87545, New Mexico, United States of America Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos 87545, New Mexico, United States of America Department of Medical Genetics, Addenbrooke's Hospital National Health Service (NHS) Trust, Cambridge CB2 0QQ, United Kingdom Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.

Websites

Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns. http://www.lanl.gov

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.