Public Release: 

Temple professors use cadaver DNA to advance genetics literacy in medical curricula

Temple University Health System

IMAGE

IMAGE: Dr. Glenn S. Gerhard is pictured. view more

Credit: Temple University Health System

(Philadelphia, PA) - Cadavers have long been one of the most important resources for anatomy teaching in medical school. Now, they are also at the forefront of cutting-edge genetics teaching, thanks to innovative thinking by professors at the Lewis Katz School of Medicine at Temple University (LKSOM).

In a paper published Feb. 9 in the Journal of the American Medical Association, the Temple team, led by Glenn S. Gerhard, MD, Chair of the Department of Medical Genetics and Molecular Biochemistry, Joseph and Rebecca Goodfriend Endowed Chair in Genetics, and Professor in the Department of Pathology and Laboratory Medicine at LKSOM, described the use of cadaver DNA to advance genetics learning in a first-year medical curriculum. They are the first to explore the novel approach, which is aimed at filling a critical gap between the application of genetics in medical care and the education and training of future clinicians.

"Genetics education is an underlying theme that bridges areas of medical teaching," explained Dr. Gerhard. "But many institutions are struggling to improve genetic literacy in their medical programs."

At LKSOM, Dr. Gerhard and colleagues have been moving toward revising the first-year medical curriculum, particularly where genetics is taught. "Our goal is to integrate cutting-edge, modern genetics into the curriculum in ways that are clinically meaningful and relevant as well as unique, taking us away from the types of standard cases that have been taught in textbooks and lectures," he said.

Initially, Dr. Gerhard considered having students genotype their own DNA, an approach that had been tried previously at other academic institutions. Genotyping is used to identify single-nucleotide variations in an individual's DNA sequence, which can provide insight into traits such as hair or skin color as well as disease risk. Knowledge of such personal traits, however, can cause distress and anxiety among students.

As Dr. Gerhard began to explore other possibilities, he considered cadaver DNA, which would remove the personal aspect from sequencing and genotyping. Cadaver DNA, however, is highly fragile. Chemicals used for embalming, along with the storage of bodies for long periods of time, jeopardize the structural integrity of genetic material. Dr. Gerhard's team spent several months optimizing protocols to allow for the isolation of intact DNA from cadaver tissues.

The team piloted the approach during the fall semester of 2015. First-year medical students at LKSOM isolated cadaver DNA during the course of their dissection studies and then submitted the samples to Dr. Gerhard's laboratory for exome sequencing, which elucidates the genetic code for all protein-encoding genes. Specific single-nucleotide variations identified from exome sequencing were then assigned to each dissection team for analysis. Students examined the variants to gain insight into how specific genetic alterations affect traits and disease, and then presented their findings to the class.

According to Dr. Gerhard, the project was a success. "The goal is to connect anatomy to genomics in the context of biochemistry," he said. Analyses of cadaver DNA provided real-world scenarios, with a range of genetic variants, from those that influence drug metabolism to mutations associated with cancer - all of which could be correlated with observations the students made during their dissections and integrated with biochemistry learning in other classes. Such extensive insight and opportunities for learning would not have been possible with DNA from healthy students.

Moreover, Dr. Gerhard explained, "The element of reality - real patients with real diseases - is dynamic. The cadavers are different every year." That means students and their professors are likely to encounter different genetic variants in the future, leading to new opportunities in teaching and research.

Dr. Gerhard hopes to enlist the help of sequencing companies and eventually to secure other sources of funding to offset the expense of using cadaver DNA. Meanwhile, he and colleagues are developing ideas for focused class projects, particularly in the areas of cancer genomics and pharmacogenomics.

###

Other individuals contributing to the report include LKSOM professors Barbara Paynton, PhD, and Steven N. Popoff, PhD.

The work was funded by the Department of Medical Genetics and Molecular Biochemistry at LKSOM.

About Temple Health

Temple University Health System (TUHS) is a $1.6 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with the Lewis Katz School of Medicine at Temple University.

The Lewis Katz School of Medicine (LKSOM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 840 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, the Katz School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, LKSOM is among the top 10 most applied-to medical schools in the nation.

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System (TUHS) and by the Katz School of Medicine. TUHS neither provides nor controls the provision of health care. All health care is provided by its member organizations or independent health care providers affiliated with TUHS member organizations. Each TUHS member organization is owned and operated pursuant to its governing documents.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.