News Release

Can anti-inflammatory therapies be effective against epilepsy?

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<i>DNA and Cell Biology</i>

image: DNA and Cell Biology is the trusted source for authoritative, peer-reviewed reporting on the latest research in the field of molecular biology. By combining mechanistic and clinical studies from multiple systems in a single journal, DNA and Cell Biology facilitates communication among biological sub-disciplines. Coverage includes gene structure, function, and regulation, molecular medicine, cellular organelles, protein biosynthesis and degradation, and cell-autonomous inflammation and host cell response to infection. Complete tables of content and a sample issue may be viewed on the DNA and Cell Biology website. view more 

Credit: ©Mary Ann Liebert, Inc., publishers

New Rochelle, NY, July 6, 2016--In epileptic patients, seizures lead to an increased level of inflammation-related proteins called chemokines in the brain, and systemic inflammation likely helps trigger and promote the recurrence of seizures, making inflammation a promising new target for anticonvulsant therapy. The latest evidence on one particular chemokine of interest, CCL2, and its potential role in human epilepsy are the focus of an article in DNA and Cell Biology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free for download on the DNA and Cell Biology website until August 6, 2016.

In "Epilepsy, Seizures and Inflammation: Role of the CCL2 Chemokine", Yuri Bozzi, National Research Council, Pisa, and Matteo Caleo University of Trento, Italy, provide a comprehensive review of the research demonstrating the link between both systemic and brain inflammation and epileptic seizures. Based on established evidence that CCL2 mediates the seizure-promoting effects of inflammation, and that selectively blocking either the synthesis of CCL2 or its receptor in animal models of epilepsy suppresses inflammation-induced seizures, the researchers suggest that drugs already in for several human disorders that interfere with CCL2 signaling might be effective for treating epilepsy that is not controlled with current therapies.

"The targeted therapeutic approach to attack recruitment of inflammatory cells to the site of neuronal hyperactivity by preventing the chemoattractant molecule CCL2 from recruiting circulating cells is very promising," says Carol Shoshkes Reiss, PhD, Editor-in-Chief, of DNA and Cell Biology and Professor, Departments of Biology and Neural Science, and Global Public Health at New York University, NY. "I hope these studies can be translated from the bench to the bedside."

###

About the Journal

is the trusted source for authoritative, peer-reviewed reporting on the latest research in the field of molecular biology. By combining mechanistic and clinical studies from multiple systems in a single journal, DNA and Cell Biology facilitates communication among biological sub-disciplines. Coverage includes gene structure, function, and regulation, molecular medicine, cellular organelles, protein biosynthesis and degradation, and cell-autonomous inflammation and host cell response to infection. Complete tables of content and a sample issue may be viewed on the DNA and Cell Biology website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy, Antioxidants and Redox Signaling, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.