[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
5-Jul-2011

[ | E-mail ] Share Share

Contact: Prof. Volker Dötsch
vdoetsch@em.uni-frankfurt.de
49-697-982-9631
Goethe University Frankfurt
@goetheuni

„Anstandsdamen" leiten Proteine sicher ans Ziel

Diese Pressemitteilung ist verfügbar auf Englisch.

FRANKFURT. Eine frisch synthetisierte Proteinkette ist empfindlich wie ein neugeborenes Baby. Würde sie nicht von molekularen „Anstandsdamen", den Chaperon-Proteinen, in Empfang genommen und vor unerwünschten Kontakten im ungeheuer dicht bevölkerten Zytosol der Zelle geschützt, könnte sie sich nicht in die korrekte dreidimensionale Struktur falten. Chaperone „behüten" aber nicht nur Proteine, sondern bringen sie auch sicher an ihren Bestimmungsort und sorgen für den Einbau in die Membran der Zielstruktur. Wie das im Detail funktioniert, hat jetzt ein internationales Team unter Beteiligung der Goethe-Universität anhand einer bestimmten Proteinfamilie herausgefunden. Weil diese Proteine über eine Art Korkenzieher-Struktur in den Zellmembranen verankert sind, werden sie als „tail anchored" (TA) bezeichnet.

Den Schlüssel zur korrekten Sortierung von Proteinen bilden Signalsequenzen, die von den Chaperonen erkannt werden. Sind sie mit ihren „Schützlingen" am Bestimmungsort angelangt, sorgt die Wechselwirkung mit spezifischen Rezeptoren in der Zielmembran dafür, dass die neu angelangten Proteine in die Membran eingebaut werden. Bei den TA-Proteinen sind die Komponenten, die für Sortierung und Membraninsertion verantwortlich sind, vor kurzem identifiziert worden. Weitgehend unbekannt war bisher aber, wie dieses Sortiersystem auf molekularer Ebene funktioniert. An der interdisziplinären Studie, die in der aktuellen Online-Ausgabe der Fachzeitschrift „Science" erscheint, waren die Arbeitsgruppen von Prof. Volker Dötsch (Goethe-Universität Frankfurt am Main), Prof. Irmgard Sinning (Biochemie-Zentrum der Universität Heidelberg) und Prof. Vlad Denic (Harvard University, USA) beteiligt. Sie lösten das Rätsel durch eine Kombination unterschiedlicher experimenteller Zugänge: So kamen die Proteinkristallographie und die NMR-Spektroskopie zum Einsatz sowie biochemische und zellbiologische Ansätze.

In detaillierten biophysikalischen Studien konnte die Frankfurter Gruppe von Volker Dötsch zeigen, wie das zentrale Chaperon des verantwortlichen Proteinkomplexes, Get3 genannt, sowohl die Bindung von TA-Proteinen im Zytosol als auch deren Freigabe an der Membran reguliert. Beim Einbau in die Zielmembran helfen die beiden Rezeptorproteine Get1 und Get2. Sie nutzen eine teilweise überlappende Bindestelle an der Get3-ATPase. Anhand verschiedener Kristallstrukturen, die unterschiedliche Zustände des Get3-Rezeptor-Komplexes darstellen, konnten die Forscher auch rekonstruieren, wie der Einbau des TA-Proteins in die Zielmembran abläuft. Get3 ist ein Dimer aus zwei Protein-Untereinheiten, das sich bei Bindung an den Membranrezeptor schrittweise öffnet und dadurch eine kontrollierte Insertion des TA-Proteins ermöglicht. „Wichtig sind diese Ergebnisse vor allem deshalb, weil wir ein erstes Modell der rezeptor-assistierten Membraninsertion erstellen konnten, das jetzt die Grundlage für weitere Studien bildet", erläutert Dötsch.

###

Informationen: Prof. Volker Dötsch, Institut für Biophysikalische Chemie, Campus Riedberg, Tel: (069) 798-29631, vdoetsch@em.uni-frankfurt.de

Publikation: Stefer, S. et al. (2011): Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex, Science, in press.

Bildmaterial finden Sie im Downloadbereich in der rechten Spalte.

Bildunterschrift: Gezeigt ist eine Kristallstruktur des Get3-Rezeptor-Komplexes. Die beiden Get3 Untereinheiten sind in grün und blau dargestellt. An jede der beiden Einheiten bindet jeweils ein Get1 Rezeptorprotein, gezeigt in rot und orange. Das Get1 Protein bindet an die Innenseite des Get3-Dimers und führt damit zu dessen Öffnung. Dies ermöglicht die Freisetzung des TA-Proteins von dem Get3-Chaperon und nachfolgend die Insertion in die Membran.



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.