[ Back to EurekAlert! ] Public release date: 7-Feb-2012
[ | E-mail Share Share ]

Contact: Dr. Hubert Dinse
49-023-432-25565
Ruhr-University Bochum

Warum der Mittelfinger so eine lange Leitung hat

PNAS: Hemmung von den Nachbarnervenzellen bestimmt die Reaktionsgeschwindigkeit

Diese Pressemitteilung ist verfügbar auf Englisch.

Jeder Körperteil besitzt im Gehirn einen eigenen Nervenzellbereich – wir haben also eine Karte unseres Körpers im Kopf. Die funktionelle Bedeutung dieser Karten ist aber weitgehend unklar. Welche Auswirkungen sie haben können, haben RUB-Neurowissenschaftler jetzt mit Reaktionszeitmessungen in Kombination mit Lernexperimenten und „computational modeling" gezeigt. Sie konnten belegen, dass hemmende Einflüsse benachbarter „Fingernervenzellen" die Reaktionszeit eines Fingers beeinflussen. Finger am Rand – also Daumen und kleiner Finger – reagieren deswegen schneller als der Mittelfinger, der dem „Störfeuer" von je zwei Nachbarn pro Seite ausgesetzt ist. Durch gezieltes Lernen lässt sich dieser Geschwindigkeitsnachteil ausgleichen. Die AG von PD Dr. Hubert Dinse (Neural Plasticity Lab am Institut für Neuroinformatik) berichtet in der aktuellen Ausgabe von PNAS.

Daumen und kleiner Finger sind die flottesten

Die Forscher stellten Versuchspersonen eine einfache Aufgabe, um die Entscheidungsgeschwindigkeit zu messen: Sie zeigten ihnen auf einem Monitor eine Grafik, die alle zehn Finger darstellte. Wurde einer der Finger markiert, sollte der Proband so schnell wie möglich mit ebendiesem Finger eine entsprechende Taste drücken. Daumen und kleiner Finger waren dabei am schnellsten. Der Mittelfinger bildete das Schlusslicht. „Man könnte jetzt vermuten, dass das anatomische Gründe hat oder von der Übung abhängt", so Dr. Dinse, „aber das konnten wir mit weiteren Tests ausschließen. Im Prinzip kann jeder Finger gleich schnell reagieren. Erst bei der Auswahlaufgabe ist der Mittelfinger deutlich benachteiligt."

Computersimulation bildet Gehirnkarten ab

Um ihre Beobachtung zu erklären, nutzten die Forscher Computersimulationen auf der Basis eines sog. mean field-Modells. Es ist speziell für die Modellierung großer Nervenzellnetzwerke im Gehirn geeignet. Für diese Simulationen wird jeder einzelne Finger durch eine Gruppe von Nervenzellen repräsentiert, die in Anlehnung an die tatsächlichen Verhältnisse im somatosensorischen Cortex des Gehirns in Form einer topographischen Karte der Finger angeordnet sind. „Benachbarte Finger liegen auch im Gehirn und somit auch in der Simulation benachbart", erläutert Dr. Dinse. Die Kommunikation der Nervenzellen untereinander ist dabei so organisiert, dass die Nervenzellen durch wechselseitige Erregung und Hemmung interagieren.

Hemmende Einflüsse von beiden Seiten verlangsamen den Mittelfinger

Die Computersimulationen zeigten, dass die längere Reaktionszeit des Mittelfingers in einer Mehrfachwahlaufgabe eine Folge der Tatsache ist, dass der Mittelfinger in der Reichweite der Hemmung von jeweils zwei benachbarten Fingern liegt. Daumen und kleiner Finger dagegen erhalten hemmenden Einfluss vergleichbarer Stärke von nur jeweils einem Nachbarfinger. „Mit anderen Worten: Die hohe Hemmung, die die Nervenzellen der Mittelfinger erhalten, sorgt dafür, dass es länger dauert, bis Erregung aufgebaut ist – sie reagieren dadurch langsamer", verdeutlicht Dr. Dinse.

Gezielte Reduzierung der Inhibition durch Lernen

Aus den Ergebnissen der Computersimulation lässt sich folgern, dass eine schwächere Hemmung durch die Nachbarfinger die Reaktionszeit des Mittelfingers verkürzen müsste. Dazu wäre eine sog. plastische Veränderung des Gehirns notwendig – Spezialgebiet des Neural Plasticity Lab, das sich seit Jahren mit der Entwicklung von Lernprotokollen beschäftigt, welche solche Veränderungen auslösen. Ein solches Protokoll ist die wiederholte Stimulation bestimmter Nervenzellgruppen, die das Labor schon in vielen Experimenten eingesetzt hat. „Wenn man zum Beispiel einen Finger elektrisch oder per Vibration über zwei bis drei Stunden stimuliert, dann verändert sich seine Repräsentation im Gehirn", erklärt Dr. Dinse. Die Folge sind eine Verbesserung des Tastsinns und eine messbare Verminderung der hemmenden Prozesse in diesem Gehirnbereich. Daraus resultiert auch die Vergrößerung der Repräsentation des stimulierten Fingers.

Zweites Experiment bestätigt die Vorhersage

Die Bochumer Forscher führten nun ein zweites Experiment durch, in dem der rechte Mittelfinger einer solchen Stimulation unterzogen wurde. Das Ergebnis war eine deutliche Verkürzung der Reaktionszeit dieses Fingers in der Auswahlaufgabe. „Dieser Befund bestätigt unsere Vorhersage", fasst Dr. Dinse zusammen. Die Bochumer Arbeiten stellen somit erstmals einen direkten Zusammenhang zwischen den sog. lateralen Inhibitionsprozessen und Entscheidungsprozessen her. Sie zeigen, dass Lernprozesse, die kortikale Karten verändern, weitreichende Auswirkungen nicht nur für einfache Unterscheidungsaufgaben, sondern für Entscheidungsprozesse haben können, die bisher sog. „höheren" kortikalen Arealen zugeschrieben wurden.

###

Förderung

Die Forschungsarbeiten wurden gefördert durch die Studienstiftung des deutschen Volkes und die Alexander von Humboldt Stiftung (Stipendien Claudia Wilimzig, inzwischen am California Institute of Technology), ein Stipendium der International Graduate School of Neuroscience der RUB (Patrick Ragert, inzwischen am MPI für Kognitions- und Neurowissenschaften, Leipzig), die Deutsche Forschungsgemeinschaft (Di 334/10) und den Bernstein Fokus Neuronale Grundlagen des Lernens (BFNL) "Zustandsabhängigkeit des Lernens" (Hubert Dinse).

Titelaufnahme

Claudia Wilimzig, Patrick Ragert, und Hubert R. Dinse. Cortical topography of intracortical inhibition influences the speed of decision making, PNAS (2012), doi/10.1073/pnas.1114250109



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.