[ Back to EurekAlert! ]

PUBLIC RELEASE DATE:
21-Mar-2013

[ | E-mail ] Share Share

Contact: Thomas Rattei
thomas.rattei@univie.ac.at
43-142-777-6210
University of Vienna
@univienna

Neue Forschungsergebnisse zur Evolution von Proteinnetzwerken

Diese Pressemitteilung ist verfügbar auf Englisch.

Organismen werden erst durch die systemweite Vernetzung der Proteine lebensfähig. Funktion und Evolution dieser Proteinnetzwerke zählen derzeit zu den spannendsten Fragen in der Biologie. Der Bioinformatiker Thomas Rattei, Universität Wien, und der Physiker Hernan Makse, City University New York (CUNY), verglichen rekonstruierte Proteinnetzwerke. Die Ergebnisse sind sowohl für die Evolutionsforschung als auch für die Interpretation von Genomsequenzdaten interessant. Aktuell publizieren sie dazu in der renommierten Fachzeitschrift PLOS ONE.

Die Zellen aller Lebewesen bestehen maßgeblich aus Proteinen, die in einem komplexen Miteinander verschiedenste Funktionen ermöglichen. Diese reichen vom Stoffwechsel über den Erhalt und die Steuerung der Zelle bis zum Austausch von Signalen mit anderen Zellen und der Umwelt. Kaum ein Protein wirkt dabei für sich allein - deren systemweite Vernetzung macht die Organismen erst lebensfähig. "Das Wissen um Funktion und Evolution dieser Proteinnetzwerke ist aktuell eine der spannendsten Fragen in der Biologie und z.B. auch in der Krebsforschung bedeutsam", erklärt Thomas Rattei, Leiter des Departments für Computational Systems Biology am Universitätszentrum Althanstraße, sein Forschungsgebiet.

Auf der Suche nach dem Bauplan für Proteinnetzwerke

Durch die Kombination von 20 verschiedenen Bausteinen - den Aminosäuren - ergibt sich eine enorme Vielfalt theoretisch möglicher Proteinvarianten; viel mehr als die geschätzte Anzahl aller Sterne im Universum. Die zufällige Ausbildung einer Wechselwirkung zwischen Proteinen erscheint daher extrem unwahrscheinlich. Wie sich dennoch so komplexe und vielfältige Proteinnetzwerke in den heutigen Lebensformen ausbilden konnten, untersuchten Thomas Rattei, Professor für "In Silico Genomics" an der Universität Wien, und Hernan Makse, Professor für Physik an der City University New York (CUNY), mit ihren jeweiligen Arbeitsgruppen.

Ausgangspunkt des gemeinsamen Forschungsprojekts war eine Hypothese, in welcher der Vervielfältigung von Proteinen im Laufe der Evolution besondere Bedeutung zukommt. Wird das Erbgut eines Proteins im Genom dupliziert, was evolutionär recht oft vorkommt, dann wechselwirken Kopie und Original mit denselben Partnern im Proteinnetzwerk. Verändern sich danach Original und Kopie, können neuartige Proteine mit individuellen Funktionen und eigenen Partnern im Netzwerk entstehen. Somit würden Interaktionen im Netzwerk nicht neu geschaffen, sondern durch Vervielfältigung und Veränderung aus einfacheren Vorläufern entstehen.

Proteinnetzwerke ausgestorbener evolutionärer Vorläufer rekonstruiert

In einem aufwändigen Computerexperiment haben die beiden Arbeitsgruppen um Bioinformatiker Thomas Rattei und Physiker Hernan Makse diese Hypothese überprüft und verfeinert. Hierfür wurde eine neuartige Methode entwickelt, mit der sich aus den Genomen und Proteinnetzwerken heute lebender Organismen die Netzwerke längst ausgestorbener evolutionärer Vorläufer rekonstruieren lassen. Verwendet wurden Daten von sieben Arten aus den verschiedensten Bereichen des Lebens: von Bakterien über Pilze, Pflanzen, Tiere bis hin zum Menschen.

Heutige Netzwerke - komplexe Strukturen durch einfache Mechanismen

Der Vergleich der so rekonstruierten frühen Proteinnetzwerke lieferte ein überraschend eindeutiges Ergebnis: die heutigen Netzwerke lassen sich fast vollständig durch den Mechanismus von Vervielfältigung und Veränderung erklären. Neuartige Wechselwirkungen zwischen bestehenden Proteinen entstehen hingegen extrem selten. Dieses Prinzip scheint in der Evolution universell zu wirken, denn es wurde durch Daten aller untersuchten Organismen bestätigt. Dieser Wachstumsmechanismus könnte auch für andere Typen biologischer Netzwerke wirken, und er erklärt auf einfache Weise besondere Eigenschaften, wie beispielsweise die Selbstähnlichkeit (Fraktalität) in Proteinnetzwerken.

Hilfreich für Interpretation von Genomsequenzdaten und Evolutionsforschung

Die Ergebnisse des gemeinsamen Forschungsprojekts der Universität Wien und der CUNY werden nicht nur für die Evolutionsforschung Bedeutung haben. Sie unterstützen insbesondere die Interpretation von Genomsequenzdaten, die in den letzten Jahren in vielen Bereichen der Biologie und Medizin zur etablierten Methode geworden ist. Diese Zielstellung haben auch zahlreiche aktuelle Projekte des Departments für Computational Systems Biology, das mit systemweiten Forschungsansätzen Krankheitserreger, mikrobielle Gemeinschaften und molekulare Wechselwirkungen zwischen verschiedenen Organismen analysiert.

###


[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.