[ Back to EurekAlert! ] Public release date: 16-May-2013
[ | E-mail Share Share ]

Contact: Hidetsugu Shiozawa
hidetsugu.shiozawa@univie.ac.at
43-664-602-777-2628
University of Vienna

Wie man einen Nano-Schnurrbart wachsen lässt

Diese Pressemitteilung ist verfügbar auf Englisch.

Nanotechnologie basiert auf der Herstellung von erstaunlich kleinen Materialstrukturen, den Nano-Strukturen. Physikern an der Universität Wien ist es nun gelungen, eine einzigartige Nano-Struktur aus Kohlenstoff zu züchten, die einem winzigen gezwirbelten Schnurrbart ähnelt. Ihre Methode könnte wegweisend für die Bildung komplexerer Nano-Netzwerke sein. Die Forscher der Gruppe "Elektronische Materialeigenschaften" an der Fakultät für Physik und ihre internationalen KollegInnen veröffentlichten ihre Ergebnisse im neuen Open Access Journal des renommierten Verlagshauses Nature: Scientific Reports.

Nano-Materialien weisen einzigartige Eigenschaften auf, die nur dann zur Geltung kommen, wenn die Materialstrukturen winzig klein, d.h. auf der Nano-Skala, sind. Um sich diese besonderen Eigenschaften wie z.B. spezielle Quanteneffekte zunutze zu machen, ist es wichtig, vordefinierte Nano-Strukturen gezielt herzustellen und erklären zu können, wieso diese eine bestimmte Form annehmen. WissenschafterInnen wollen daher genau verstehen, wie man das Wachstum von Nano-Materialien auslösen und steuern kann und verfolgen verschiedene Strategien, um Nano-Strukturen zu entwickeln und deren Wachstum zu kontrollieren. Im großen Vorbild Natur wachsen viele organische Formen bilateral, das heißt symmetrisch in zwei unterschiedliche Richtungen.

Einem internationalen Forscherteam von der Universität Wien, der Universität Surrey (UK) und des IFW Dresden (Deutschland) gelang nun unter Anwendung einer neuartigen Methode die bilaterale Züchtung von inorganischen Nano-Materialien in einer kontrollierten Umgebung.

Die Bedeutung von Nano-Schnurrbärten

Die WissenschafterInnen setzten ein Gas mit Kohlenstoff- und Eisen-Atomen bei hohen Temperaturen solange unter Druck, bis sie beobachteten, wie ganz spontan zwei Arme aus Kohlenstoff-Atomen von einem Eisenkern ausgehend zu wachsen begannen. Bei ausreichend kleinen Eisenkernen fingen die Kohlenstoff-Arme an, sich an ihren Enden spiralförmig einzudrehen, sodass die ganze Nano-Struktur eine verblüffende Ähnlichkeit mit einem gezwirbelten Schnurrbart aufweist. "Die ermutigenden Erkenntnisse aus unseren Experimenten bieten einen sehr guten Ausgangspunkt für die kontrollierte Herstellung von außergewöhnlichen neuen Materialien mit vordefinierten Nano-Strukturen", betont Hidetsugu Shiozawa, Erstautor der Publikation und Forscher an der Fakultät für Physik der Universität Wien.

Nützliche "Fehler"

Um mehr über den internen Aufbau der Nano-Schnurrbärte herauszufinden, schnitten die ForscherInnen ihr Nano-Material in extrem dünne Scheiben und benützten ein spezielles Mikroskop –ein Transmissionselektronenmikroskop –, das ihnen einen genaueren Blick in die Scheiben ermöglichte. Wenn sich Nano-Strukturen ausbilden, entstehen strukturelle Fehlstellen im Material, die etwas über ihren Wachstumsprozess verraten. Die Art und Weise, wie die strukturellen Fehlstellen im beobachteten Fischgrätmuster der aufgeschnittenen Nano-Schnurrbärte verteilt waren, erlaubte den WissenschafterInnen einen Blick in die Vergangenheit und lieferte weitere Informationen über die Bildung des Nano-Materials. Für künftige Anwendungen ist es wichtig, diese Erkenntnisse auf das Wachstum von Nano-Strukturen in zwei oder drei Dimensionen zu übertragen, um so regelmäßige Muster und Netzwerke auf der Nano-Skala herzustellen.

Die WissenschafterInnen haben es sich deshalb zum Ziel gesetzt, noch mehr über den Mechanismus zu erfahren, der hinter der Ausformung der Nano-Schnurrbärte steckt und wollen in künftigen Forschungsprojekten mehrdimensionale und noch komplexere Nano-Strukturen züchten.

###

Wissenschaftliche Publikation: "Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core":
Hidetsugu Shiozawa, Alicja Bachmatiuk, Andreas Stangl, David C. Cox, S. Ravi P. Silva, Mark H. Rümmeli & Thomas Pichler
Scientific Reports 3, Article number: 1840
doi:10.1038/srep01840
Veröffentlicht am 14. Mai 2013



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.