[ Back to EurekAlert! ]

Public release date: 2-Oct-2013

[ | E-mail ] Share Share

Contact: Franz Josef Ahlers
franz.ahlers@ptb.de
49-531-592-2600
Physikalisch-Technische Bundesanstalt (PTB)

Graphen mit Aroma

Neue Herstellungsmethode erweitert die Perspektiven zur besseren Nutzung des ,Wundermaterials' -- verschiedenste Formen möglich

Diese Pressemitteilung ist verfügbar auf Englisch.

IMAGE: Auf dem Titelbild der Zeitschrift Advanced Materials ist die Umwandlung der Monolage des komplexen Moleküls Biphenylthiol in den zweidimensionalen Graphenkristall durch Elektronenbestrahlung und thermische Behandlung schematisch dargestellt.

Click here for more information.

Graphen, ein Kristall aus nur einer Lage von Kohlenstoffatomen, die im regelmäßigen Sechseck angeordnet sind, gilt als ein Material, dem vor allem in den Bereichen Elektronik, Sensorik und Displaytechnologie, aber auch in der Metrologie Wunderdinge zugetraut werden. Bereits vier Jahre nach der erstmaligen erfolgreichen Präparation von Graphen wurden seine Entdecker Geim und Novoselov daher mit dem Nobelpreis ausgezeichnet. Da die ursprüngliche Präparationsmethode durch Abschälen einzelner Atomlagen aus Graphit aber keine gute Perspektive für die breite technologische Nutzung bietet, konzentrieren sich viele Forschungsgruppen sehr stark auf die Entwicklung alternativer Herstellungsverfahren. Eine völlig neue und sehr flexible Variante wurde nun von der Gruppe von Andrey Turchanin von der Universität Bielefeld in Zusammenarbeit mit der Universität Ulm und drei Fachbereichen der Physikalisch-Technischen Bundesanstalt (PTB) entwickelt und in der Zeitschrift Advanced Materials veröffentlicht.

Im Unterschied zu üblichen Methoden, bei denen das Graphen z. B. durch Abscheiden von Kohlenstoffatomen aus der Gasphase oder durch thermische Graphitierung von Siliciumcarbid hergestellt wird, wählten die Wissenschaftler in dieser Arbeit aromatische Moleküle als Ausgangspunkt. Als Substrate kamen dabei sowohl Kupfer-Einkristalle als auch preiswerte polykristalline Kupferfolien zum Einsatz. Durch Bestrahlung mit niederenergetischen Elektronen und nachfolgendes thermisches Ausheilen gelang es dann, eine auf der Kupferoberfläche abgeschiedene selbst-organisierte Einzellage des Moleküls Biphenylthiol in Graphen umzuwandeln.

Für die Untersuchung der chemischen und physikalischen Eigenschaften des so erzeugten Graphens kamen verschiedene Charakterisierungsmethoden der Universitäten Ulm und Bielefeld sowie der PTB zum Einsatz, nämlich die Raster-Tunnelmikroskopie, die Transmissionselektronenmikroskopie, die Ramanspektroskopie sowie elektrische Transportmessungen bei tiefen Temperaturen und hohen Magnetfeldern. All diese Messungen bestätigten, dass aus dem aromatischen Molekül wirklich Graphen von hervorragender kristalliner und elektronischer Qualität entstanden war.

Durch die Flexibilität der Elektronenbestrahlung, die sowohl großflächig als auch mit hervorragender Ortsauflösung an kleinen wohldefinierten Stellen möglich ist, lassen sich nun Graphenstrukturen mit prinzipiell beliebiger Form erzeugen, z. B. Quantenpunkte, Nanostreifen oder andere Nano-Geometrien mit spezifischer Funktionalität. Durch die Wahl der Temperatur beim thermischen Umwandlungsschritt können auch der Grad der Kristallinität und die davon abhängenden Eigenschaften des Graphens eingestellt werden.

Weitere Vorteile entstehen durch die Vielseitigkeit der Methode der selbst-organisierten Beschichtung. Man kann sie mit unterschiedlichen aromatischen Molekülen durchführen, die z. B. auch Dotieratome zur elektronischen Dotierung des Endprodukts enthalten könnten. In Mehrfachlagen aufgebracht, könnte man sogenannte Bilagen- oder Multilagen-Graphene erzeugen, deren geänderte elektronische Bandstruktur die Anwendungsmöglichkeiten von Einzellagen-Graphen erweitert. Ebenso könnten andere Substrate als das hier verwendete Kupfer (etwa andere Metalle, Halbleiter, Isolatoren) genutzt werden. Darüber hinaus sollte auch die Erzeugung von Graphen auf beliebigen 3D-Oberflächen möglich sein, da molekulare Selbstorganisation auch auf gekrümmten Flächen stattfindet. Die neue Herstellungsmethode erweitert die Perspektiven zur besseren Nutzung des ,Wundermaterials' auf so eindrucksvolle Art, dass die entsprechende Veröffentlichung auf dem Umschlagsblatt in der Augustausgabe der Zeitschrift Advanced Materials hervorgehoben wurde.

###

Ansprechpartner

Franz Josef Ahlers, PTB-Fachbereich 2.6 Elektrische Quantenmetrologie, Telefon (0531) 592-2600, E-Mail: franz.ahlers@ptb.de

PD Dr. Andrey Turchanin, Universität Bielefeld, Fakultät für Physik, Physik supramolekularer Systeme und Oberflächen, Bielefeld Insitute for Biophysics and Nanoscience (BINAS), Universitätsstr. 25, 33615 Bielefeld, Telefon: (0521) 106-5376, E-Mail: turchanin@physik.uni-bielefeld.de

Die Originalveröffentlichung

D. G. Matei, N.-E. Weber, S. Kurasch, S. Wundrack, M. Woszczyna, M. Grothe, T. Weimann, F.-J. Ahlers, R. Stosch, U. Kaiser, A. Turchanin: Functional single-layer graphene sheets from aromatic monolayers. Advanced Materials, 25 (2013), 30, 4146-4151, dx.doi.org/10.1002/adma.201300651 [article], dx.doi.org/10.1002/adma.201370195 [frontispiece]; Wiley-VCH. ISSN 1521-4095



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.