[ Back to EurekAlert! ]

Public release date: 22-Oct-2013

[ | E-mail ] Share Share

Contact: Dr. Patrick Meistser
pmeister@mpi-bremen.de
49-421-202-8832
Max-Planck-Gesellschaft

Klimaveränderungen beeinflussen das mikrobielle Leben unter dem Meeresboden

Tiefseesedimente geben Aufschluss über die Dynamik der tiefen Biosphäre

Diese Pressemitteilung ist verfügbar auf Englisch.

Klimaveränderungen in den letzten hunderttausend Jahren haben das mikrobielle Ökosystem unter dem Meeresboden beeinflusst. Das belegen neu entdeckte Spuren in Meeressedimenten vor der Küste von Peru, wie Forscher vom Bremer Max-Planck-Institut für marine Mikrobiologie und ihre Kollegen jetzt in der amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) berichten.

Die Wissenschaftler und ihre Kollegen vom MARUM und der Universität Aarhus erforschen seit über zehn Jahren das Leben im Untergrund des Meeres, der tiefen Biosphäre. Dieses Ökosystem, welches ausschließlich von Mikroben bewohnt wird und mehrere hundert Meter unter den Meeresboden reicht, gilt als stabil. Allerdings ist bisher wenig darüber bekannt, wie sich dieses System über Jahrtausende verändert hat und wie das mikrobielle Leben dort die Stoffkreisläufe von Kohlenstoff in den Ozeanen beeinflusst. Wie dynamisch diese Wechselwirkung ist und war, zeigen die Ergebnisse einer Analyse von Bohrkernen vom Kontinentalschelf vor Peru.

Ein Verbund von Mikroorganismen (Archaeen und Bakterien) im Meeresboden nutzt die Energie von Methan, das sie mit Hilfe von Sulfat oxidieren. Dieser Prozess ist unter dem Namen Anaerobe Oxidation von Methan (AOM) bekannt und wird auch am Max-Planck-Institut in Bremen erforscht. Das Methan stammt aus tieferen Schichten im Meeresboden, das Sulfat stammt aus dem darüber liegenden Meerwasser, aus dem es langsam in den Meeresboden diffundiert.

Beide Reaktionspartner treffen in einer Schicht aufeinander, die man als Methan-Front bezeichnet. Nur an dieser Front stehen beide Substanzen in ausreichender Konzentration den Mikroorganismen zur Verfügung, und genau dort hinterlässt der AOM-Prozess stabile Signaturen in Form von charakteristischen Zellbestandteilen. Archaeol, ein Membranbestandteil der Archaeen, ist ein stabiles Molekül und bleibt deshalb über Jahrtausende bis Jahrmillionen erhalten. Da durch den Stoffwechsel der Mikroben auch Barium und Karbonat freigesetzt werden, kommt es an der Sulfat-Methan-Übergangszone zur Ausfällung von Baryt (Bariumsulfat) und Dolomit (Magnesium-Kalzium-Karbonat). Anhand dieser organischen und mineralischen Signaturen in Bohrkernen kann man die relative Tiefe früherer Übergangszonen zum damaligen Meeresgrund bestimmen.

Wanderung der Methan-Front

Um die Wanderung der Methan-Front in den letzten 500.000 Jahren zu rekonstruieren, haben sich der Palaeo-Ozeanograf Sergio Contreras und seine Kollegen die einzelnen Schichten und deren Gehalt an Baryt, Dolomit und Archaeol in Bohrkernen aus dem Sediment vor der Küste Perus genau angeschaut. Hier nahmen die Forscher im Jahr 2002 an Bord des wissenschaftlichen Bohrschiffs JOIDES Resolution im Rahmen des Ocean Drilling Programs ihre bis zu 200 Meter langen Bohrkerne. Tatsächlich fanden Contreras und Kollegen eine Sedimentschicht, die gleichzeitig Archaeol, Baryt und Dolomit enthält. Erstaunlicherweise liegt diese Schicht zirka 20 Meter oberhalb der heutigen Methan-Front. Zeitliche Abschätzungen lassen den Schluss zu, dass diese Schicht vor etwa 125.000 Jahren während der letzten Warmzeit entstanden sein muss, und dass die Methan-Front während der letzten Eiszeit nach unten gewandert ist. "Die Mikroorganismen sprechen sehr schnell auf Veränderungen im Ozean an, zumindestens in geologischen Zeiträumen", erläutert der Biogeochemiker Tim Ferdelman.

Mit mathematischer Modellierung das Puzzle lösen

Um die Entwicklung der tiefen Biosphäre und deren Einflüsse zu simulieren, haben Contreras und seine Kollegen ein mathematisches Modell entwickelt. Damit fanden sie heraus, dass der Eintrag von organischem Kohlenstoff der bestimmende Faktor für die relative Lage der Sulfat-Methan-Übergangszone war, wobei bekannt ist, dass der Kohlenstoffeintrag vor der Küste Perus durch das globale Klima gesteuert ist. In den wärmeren Perioden gab es verstärkten Kohlenstoffeintrag, der dazu führte, dass die Methan-Front relativ schnell nach oben wanderte. In kälteren Zeiten mit vermindertem Kohlenstoffeintrag sank die Front tiefer. „Diese jetzt entdeckten Zusammenhänge werden wir in den neuen Modellen für die tiefe Biosphäre berücksichtigen", sagt Bo Liu, der das Modell für die Studie entwickelt hat.

Der Geologe Patrick Meister unterstreicht die Bedeutung dieser Studie: „Die entdeckten Spuren sind der Schlüssel zur Geschichte von mikrobieller Aktivität und deren dynamische Wechselwirkung mit Klima und Ozeanographie über einen Zeitraum von 100.000 Jahren. Wenn wir noch weiter in der Zeit zurückgehen und zum Beispiel die letzte Million Jahre betrachten", so vermutet Meister, „finden wir möglicherweise noch viel dramatischere Veränderungen in der tiefen Biosphäre."

###



[ Back to EurekAlert! ] [ | E-mail Share Share ]

 


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.