A systems-oriented review of China’s wind and solar power development toward carbon neutrality
Peer-Reviewed Publication
Welcome to theTsinghua University Press (TUP) News Page.
Below are the latest research news from TUP.
Updates every hour. Last Updated: 5-Sep-2025 22:11 ET (6-Sep-2025 02:11 GMT/UTC)
Wind and solar energy are central to China’s pursuit of carbon neutrality and energy transition. From a system-wide perspective, this study examines the future development of wind power, photovoltaic (PV), and concentrated solar power (CSP), covering forecasting methodologies, power system flexibility, energy storage integration, and cross-sector coupling. By 2060, the combined installed capacity of wind and solar is projected to reach 5,496–7,662 GW, accounting for more than 83% of the nation’s total capacity. Despite progress in technological maturity and cost reduction, challenges remain in terms of limited generation efficiency, high storage costs, insufficient grid flexibility, and policy coordination. This paper further proposes a sustainable development roadmap centered on wind–solar synergies.
To achieve carbon neutrality by 2060, China must address the complex challenge of decarbonizing key industrial sectors, including steel, cement, petrochemicals, and non-ferrous metals. This review presents a comprehensive evaluation of major decarbonization technologies across these core sectors, including energy efficiency, clean electrification, hydrogen alternatives, feedstock substitution, recycling, carbon removal, and digitalization. Staged projections highlight the central role of different technologies in achieving industrial decarbonization: energy efficiency improvement (EEI) and feedstock substitution and waste recycling (FSWR) technologies before 2035, the accelerated deployment of clean electricity and green hydrogen between 2035 and 2050, and carbon capture, utilization and storage (CCUS) from 2050 onward. The review further offers policy recommendations to support technological advancement, promote large-scale deployment, and integrate low-carbon solutions into industrial development pathways.
There are many examples of options to tackle various global challenges that have been implemented in ways that only consider the impact on the challenge they are meant to address. Because of this narrow way of thinking, we are missing out on potential synergies that would help us to deliver to multiple challenges simultaneously. Designing options from the outset to co-deliver to multiple challenges would improve efficiency and reduce total cost. It is vital that we progress beyond narrow ways of thinking, and to adopt a “nexus” approach to tackling global challenges.
Scientists have developed a pioneering framework that translates human brain activity into editable visual imagery, opening up new possibilities for creative design and human–computer interaction. Named DreamConnect, the system employs a dual-stream diffusion model to directly interpret functional magnetic resonance imaging (fMRI) signals and refine them with natural language instructions. By progressively aligning brain activity with user-directed prompts, the method allows for manipulation of imagined scenes—such as transforming a mental picture of a lake into a vivid sunset. This breakthrough demonstrates the potential of brain-to-image technologies to actively shape human “dreams,” suggesting future applications in design, therapy, and communication.
Middle-ear effusion (MEE)—fluid trapped behind the eardrum—can quietly erode hearing, often without pain or fever. In a breakthrough simulation study, researchers used a finely tuned finite element (FE) model of the human ear to mimic six levels of MEE, from barely present to completely filling the cavity. The results reveal a tipping point: when fluid occupies less than half the middle ear space, hearing loss is minimal, averaging about 3 dB. But once it passes the 50% mark, sound transmission plummets, energy absorbance (EA) rates collapse below 20%, and hearing loss can soar to nearly 46 dB. This “fluid threshold” could sharpen diagnostic accuracy and guide timely treatment.
Lithium-rich oxides are widely regarded as one of the most promising cathode materials for next-generation lithium-ion batteries, but their potential has been hampered by rapid performance degradation. Now, researchers have developed a protective LiF@spinel dual shell that dramatically improves their stability. The spinel layer acts as a fast highway for lithium ions, while the outer LiF layer serves as a shield against corrosive electrolytes. Working in tandem, the two layers prevent structural collapse and suppress damaging side reactions. With this innovation, the modified cathode demonstrates outstanding cycle life and capacity retention, opening a new path toward reliable high-energy batteries.
The performance of a battery depends not just on what it’s made of, but also on how it’s built. A new study reveals that the thickness of boride films—critical components in all-solid-state thin-film lithium batteries (TFLBs)—directly governs voltage behavior, capacity, and long-term stability. By experimenting with cobalt–boron (CoB), iron–boron (FeB), and cobalt–iron–boron (CoFeB) alloys at varying thicknesses, researchers found that thinner films promote uniform lithium-ion distribution, reduce polarization, and enhance reaction kinetics, resulting in steeper yet more stable voltage profiles. The findings offer a unified theory connecting thickness, composition, and lithiation behavior—providing a straightforward strategy to design next-generation, high-performance energy storage devices.
Although traditional spinel oxides exhibit excellent microwave dielectric or thermosensitive properties, achieving linear negative temperature coefficient (NTC) behaviour and stable microwave dielectric performance simultaneously across a wide temperature range remains challenging, making it impossible to meet the stringent requirements for multifunctional integration in 6G front-end devices. This study developed Sc3+-modified Mg-Al-Mn-Fe-O spinel ceramics through B-site cation doping, breaking through this performance trade-off bottleneck. On the one hand, Sc3+ inhibits the formation of oxygen vacancies and regulates the Mn/Fe valence ratio, achieving highly linear thermosensitive characteristics across an ultra-wide temperature range of 200-1000°C (B200°C/1000°C = 8367-9758 K). On the other hand, through the lattice stabilisation effect induced by Sc3+ and the octahedral site bond strength enhancement mechanism, excellent microwave dielectric properties were simultaneously obtained: low dielectric constants (εr = 8.86-10.55), ultrahigh quality factor (Q·f= 96,000-149,000 GHz), and near-zero temperature coefficient of resonant frequency (τf = -33.2 to -10.2×10-6/°C). The cylindrical dielectric resonator antenna developed based on the prepared ceramic achieved 92% radiation efficiency and 6.28 dBi gain in the 12 GHz frequency band, verifying its engineering application potential in satellite communication front-end modules.
Maritime transportation is responsible for nearly 90% of global overseas trade. Modern shipboard power systems integrate inverter-based resources (IBRs) to increase the reliability and security of energy supplies. Led by Prof. Fei Feng of State University of New York Maritime College and Prof. Peng Zhang of Stony Brook University, USA, a research team has developed a generalized power flow approach for future shipboard microgrids. Their method incorporates advanced grid forming controls into power flow algorithms, enabling shipboard microgrids considering power sharing and voltage regulation effects under complex ocean-going conditions.
Thermal-sprayed nanostructured ceramic coatings have demonstrated considerable potential for surface protection applications. Nevertheless, regulation of their microstructure and mechanical properties remains challenging owing to the persistent dependence on reconstituted feedstocks. The advancement of novel feedstock preparation technologies for thermal-sprayed coatings assumes utmost significance. In response, a novel nano-eutectic Al2O3-ZrO2 powder was prepared using a unique combustion synthesis-air atomization (CS-AA) process, which was employed in atmospheric plasma spraying (APS) to fabricate a nanostructured coating for wear protection.