
Theory describes quantum phenomenon in nanomaterials
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Theoretical physicists Yoshimichi Teratani and Akira Oguri of Osaka City University, and Rui Sakano of the University of Tokyo have developed mathematical formulas that describe a physical phenomenon happening within quantum dots and other nanosized materials. The formulas, published in the journal Physical Review Letters, could be applied to further theoretical research about the physics of quantum dots, ultra-cold atomic gasses, and quarks.
The team generated a movie of how light waves churn on their nanometer wavelength scale by imaging electrons that two light photons coming together cause to emit from the surface.
Understanding aerosol concentrations and persistence in public spaces can help determine infection risks. However, measuring these concentrations is difficult, requiring specialized personnel and equipment. Now, researchers demonstrate that a commercial hand-held particle counter can be used for this purpose and help determine the impacts of risk-reducing measures, like ventilation improvements. They describe the quick and easy, portable process in the journal Physics of Fluids.
In 1983, theoretical physicist Pierre Sikivie found that axions have another remarkable property: In the presence of an electromagnetic field, they should sometimes spontaneously convert to easily detectable photons. What was once thought to be completely undetectable, turned out to be potentially detectable as long as there is high enough concentration of axions and strong magnetic fields.
A technique created by researchers out of the Department of Physics and Astronomy enables them to "sketch" patterns of electrons into a programmable quantum material--lanthanum aluminate/strontium titanate or "LAO/STO".
A new study found that moderate temperature increases on glass surfaces broke down SARS-CoV-2 virus-like particles structure, while humidity had very little impact. The findings suggest that as temperatures begin to drop, particles on surfaces will remain infectious longer. This is the first study to analyze the mechanics of the virus on an individual particle level, but the findings agree with large-scale observations of other coronaviruses that appear to infect more people during the winter.
Super-fast quantum computers and communication devices could revolutionize countless aspects of our lives -- but first, researchers need a fast, efficient source of the entangled pairs of photons such systems use to transmit and manipulate information. Researchers at Stevens Institute of Technology have done just that, not only creating a chip-based photon source 100 times more efficient that previously possible, but bringing massive quantum device integration within reach.
POSTECH research team identifies second-harmonics generation interference in 2D heterobilayers.
An MIT experiment with ultracold atoms reveals new quantum magnetic behavior that may help in design of spintronic devices and magnetic materials.
Simulations have been used to predict droplet dispersal patterns in situations where COVID-19 might be spread and results in Physics of Fluids show the importance of the space shape in modeling how droplets move. The simulations are used to determine flow patterns behind a walking individual in spaces of different shape. The results reveal a higher transmission risk for children in some instances, such as behind quickly moving people in a long narrow hallway.