New delivery method promises relief from antipsychotic medication's adverse side effects
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
A team of neuroscientists and engineers at McMaster University has created a nasal spray to deliver antipsychotic medication directly to the brain instead of having it pass through the body.
New research led by the University of Pittsburgh is poised to drastically improve the use of tracheal stents for children with airway obstruction. Researchers demonstrate for the first time the successful use of a completely biodegradable magnesium-alloy tracheal stent that safely degrades and does not require removal.
In research published today in Integrative Biology, a team of engineers from Rensselaer developed an in vitro -- in the lab -- lymphatic vessel model to study the growth of tumor emboli, collections of tumor cells within vessels that are often associated with increased metastasis and tumor recurrence.
Compared to standard machine learning models, deep learning models are largely superior at discerning patterns and discriminative features in brain imaging, despite being more complex in their architecture.
Scientists at the Wits Research Institute for Malaria (WRIM) in partnership with the University of Pretoria and colleagues in the US, Spain and Switzerland have identified novel antiplasmodial lead compounds for mass drug administration and vector control to eliminate malaria.
Researchers have developed a highly sensitive technique to quantitatively evaluate the extent of cytoskeleton bundling from microscopic images. Until now, analysis of cytoskeleton organization was typically made by manually checking microscopic images. The new method uses microscopic image analysis techniques to automatically measure the cytoskeleton organization. The researchers expect it to dramatically improve our understanding of various cellular phenomena related to cytoskeletal bundling.
MIT researchers have devised a way to computationally model viral escape, using models that were originally developed to model language. The model can predict which sections of viral surface proteins, including those of influenza, HIV, and SARS-CoV-2, are more likely to mutate in a way that allows the virus to evade the human immune system. It can also identify sections that are less likely to mutate, making them good targets for new vaccines.
There is a growing consensus among scientists as well as national and local governments representing hundreds of millions of people, that humanity faces a climate crisis that demands a crisis response. New research from the University of California San Diego explores one possible mode of response: a massively funded program to deploy direct air capture (DAC) systems that remove CO2 directly from the ambient air and sequester it safely underground.
KAIST metabolic engineers presented the bio-based production of multiple short-chain primary amines that have a wide range of applications in chemical industries for the first time. The research team designed the novel biosynthetic pathways for short-chain primary amines by combining retrobiosynthesis and a precursor selection step.
Skoltech researchers have found a way to use chemical sensors and computer vision to determine when grilled chicken is cooked just right. These tools can help restaurants monitor and automate cooking processes in their kitchens, and perhaps one day even end up in your 'smart' oven.