Tracking Urban Atmospheric Plumes Over Miami Skyline (IMAGE)
Caption
Scientists at the University of Miami Rosenstiel School of Marine & Atmospheric Science discovered a technique to track urban atmospheric plumes thanks to a unique isotopic signature found in vehicle emissions. The team discovered that ethanol mixed in vehicle fuel is not completely burned, and that ethanol released in the engine’s exhaust has a higher 13C to 12C ratio when compared to natural emissions from most living plants. In other words, the corn and sugarcane used to make biofuels impart a unique chemical signature that is related to the way these plants photosynthesize their nutrients. Ethanol’s unique chemical signature can now be used during aircraft sampling campaigns to identify and track plumes as they drift away from urban areas. The findings were published in the journal Environmental Science & Technology. Air collected and analyzed from downtown Miami and the Everglades National Park and found that 75% of ethanol in Miami’s urban air came from manmade biofuels, while the majority of ethanol in the Everglades air was emitted from plants, even though a small quantity of city pollution from a nearby road floats into the park.
Credit
UM/RSMAS
Usage Restrictions
None
License
Licensed content