The Polarization of Light Emitted by a Neutron Star (IMAGE)
Caption
This artist's view shows how the light coming from the surface of a strongly magnetic neutron star (left) becomes linearly polarized as it travels through the vacuum of space close to the star on its way to the observer on Earth (right). The polarization of the observed light in the extremely strong magnetic field suggests that the empty space around the neutron star is subject to a quantum effect known as vacuum birefringence, a prediction of quantum electrodynamics (QED). This effect was predicted in the 1930s but has not been observed before.
The magnetic and electric field directions of the light rays are shown by the red and blue lines. Model simulations by Roberto Taverna (University of Padua, Italy) and Denis Gonzalez Caniulef (UCL/MSSL, UK) show how these align along a preferred direction as the light passes through the region around the neutron star. As they become aligned the light becomes polarized, and this polarization can be detected by sensitive instruments on Earth.
Credit
ESO/L. Calçada
Usage Restrictions
None
License
Licensed content