Pan-Filovirus T-Cell Vaccine Protects Mice from Ebola and Marburg (IMAGE)
Caption
Conserved regions of the filovirus proteome (red) are the most similar parts of proteins common across the eight virus species of the filovirus family. These regions were identified by amino acid alignment of all known filovirus isolates in the database. An algorithm called Epigraph computed bi-valent amino acid sequences (epigraph 1 and epigraph 2), which complement each other and are used together in a vaccine to optimize match of potential T-cell epitopes between the vaccine and all input filovirus species [11]. For the FILOcep1 and FILOcep2 epigraphs, the four regions 1, 2, 3 and 4 are 280 (nucleoprotein 131-410), 123 (matrix 71-193), 315 (RNA polymerase 540-854) and 109 (RNA polymerase 952-1060) amino acid long, respectively, and were arranged into different orders to minimize potential induction of T cells recognizing irrelevant (non-viral) newly generated epitopes across the regional junctions. Synthetic ORF coding for these two proteins each 827 amino acid in length were inserted into engineered replication-deficient simian (chimpanzee) adenovirus ChAdOx1 and replication-deficient poxvirus MVA to generate four components of the vaccine abbreviated C1, C2, M1 and M2.
Credit
Rahim et al. (2019)
Usage Restrictions
CC-BY: Redistribution permitted with credit
License
Licensed content