Tunable Properties, Strain Engineering Technologies and Photonic Applications (IMAGE)
Caption
a, Selective results to show the tunable properties under strain. From left to right are the changed band structure of monolayer TMDC under biaxial strain, redshifted PL and absorption spectra of monolayer TMDC under tensile strain and an illustrative scenario for the "funnel" effect in a wrinkled TMDC, respectively. b, Selective sketch maps for the setup or working principle of the strain engineering technologies. Top-left panel: experimental setup for a bending system to apply uniaxial stain to 2D materials. Top-right panel: a rolling technology to apply strain to graphene. Bottom-left panel: a piezoelectric substrate-based technology to apply biaxial strain to 2D materials. Bottom-right panel: a technology to form a wrinkled TMDC. c, Some selective practical applications. Left panel: schematic of a PDMS fiber incorporating graphene nanocomposites-based strain sensor. Middle panel: the strain-dependent optical loss of the strain sensor described in the left panel to measure the movement of the human body. Right panel: a PL map of a strain-induced single-photon emitter. The insert evidences its single-photon emission behavior.
Credit
by Zhiwei Peng, Xiaolin Chen, Yulong Fan, David J. Srolovitz, Dangyuan Lei
Usage Restrictions
None
License
Licensed content