Figure 1. Discovery Process (IMAGE)
Caption
The ML workflow consists of two different steps of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of prediction models that describe various polymeric properties (e.g., thermal conductivity, glass transition temperature) as a function of chemical structures in the constitutional repeat units. Here, an ML framework called transfer learning was used to overcome the issue of limited data on thermal conductivity: prediction models of some proxy properties were pre-trained on given large data sets, and then the pre-trained models were fine-tuned using the limited data on the target property. Inverting the trained forward models, we derived a backward model conditioned by a desired property requirement. By solving this inverse problem, materials that exhibit the desired properties were computationally be created.
Credit
npj Computational Materials, Ryo Yoshida, Junko Morikawa
Usage Restrictions
None
License
Licensed content