News Release

Study explains science of soccer

Reports and Proceedings

American Institute of Physics

College Park, MD (July 1, 2010) -- With the attention of sports fans worldwide focused on South Africa and the 2010 FIFA World Cup, U.S. scientist John Eric Goff has made the aerodynamics of the soccer ball a focus of his research.

In an article appearing in the magazine Physics Today this month, Goff examines the science of soccer and explains how the world's greatest players are able to make a soccer ball do things that would seem to defy the forces of nature.

Goff's article looks at the ball's changing design and how its surface roughness and asymmetric air forces contribute to its path once it leaves a player's foot. His analysis leads to an understanding of how reduced air density in games played at higher altitudes -- like those in South Africa -- can contribute to some of the jaw-dropping ball trajectories already seen in some of this year's matches.

"The ball is moving a little faster than what some of the players are used to," says Goff, who is a professor of physics at Lynchburg College in Virginia and an expert in sports science.

For Goff, soccer is a sport that offers more than non-stop action -- it is a living laboratory where physics equations are continuously expressed. On the fields of worldwide competition, the balls maneuver according to complicated formulae, he says, but these can be explained in terms the average viewer can easily understand. And the outcomes of miraculous plays can be explained simply in terms of the underlying physics.

Goff also is the author of the recently published book, "Gold Medal Physics: The Science of Sports," which uncovers the mechanisms behind some of the greatest moments in sports history, including:

  • How did Cal beat Stanford in the last seconds with five lateral passes as the Stanford marching band was coming on to the field?

  • How did Doug Flutie complete his "Hail Mary" touchdown pass that enabled Boston College to beat Miami?

  • How did Lance Armstrong cycle to a world-beating seven Tour de France victories?

  • How did Olympic greats Bob Beamon (long jump), Greg Louganis (diving) and Katarina Witt (figure skating) achieve their record-setting Olympic gold?

###

John Eric Goff is available to talk about the science of World Cup soccer and other great sports moments. Contact him via his publicist Chris Hardwick, Carnegie Communications, 508-340-9163, chardwick@carnegiecomm.com

The article "Power and spin in the beautiful game" appears in the July, 2010 issue of Physics Today and is available at http://www.physicstoday.org/beautiful_game.html

ABOUT PHYSICS TODAY

Published by the American Institute of Physics, Physics Today is the most influential and closely followed physics magazine in the world, informing readers about science and its place in the world with authoritative features, news coverage and analysis, and fresh perspectives on technological advances and ground-breaking research. Physics Today Online (www.physicstoday.org) serves as the magazine's home on the Internet, with all of its content available to subscribers and continually building a valuable online archive.

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.