News Release

New method illuminates 3-dimensional genome structure of a single cell

Findings earn top prize for young scientist

Grant and Award Announcement

American Association for the Advancement of Science (AAAS)

WASHINGTON DC - More than fifteen years after the Human Genome Project succeeded in determining the linear sequence of the DNA in our cells, Longzhi Tan has been named the 2019 Grand Prize winner of the Science & SciLifeLab Prize for Young Scientists for his work in developing an approach that allows us to visualize our genome's three-dimensional structure.

Dip-C, as the new method is called, can illuminate the structures of cellular components ranging from the whole nucleus to individual chromatin loops to alleles that differ in gene expression -- a result that reveals the intimate relationship between 3D structure and diverse cellular function.

"Obtaining the sequence of the human genome was a landmark achievement, but we were left to unravel how human cells can have different functions by reading the genome differently," said Valda Vinson, deputy editor of Science. "It has become clear that the organization of the genome plays a key role, and [Tan] gives us a new view of how this happens."

Because the genes that organize the 3D genome are frequently disrupted in intellectual disabilities, autism, schizophrenia and many types of cancers, the insights Dip-C offers to measure the 3D genomes of single cells could improve scientists' understanding of both fundamental biology and human health.

The entirety of the human genome - nearly three billion base pairs of nucleotides helically wound and bundled into thread-like chromosomes - is packaged neatly within the nucleus of every human cell. Uncoiled and stretched end-to-end, it would span almost 2 meters in length.

While the human genetic code was cracked more than a decade ago, scientists have only recently begun to understand how these meters-long molecules fold to fit into a single cellular structure little more than 10 microns in diameter - the equivalent of packing 24 miles of fine thread into a tennis ball.

However, through these pursuits, it's become increasingly clear that, beyond the sequence of the genome, the three-dimensional structures of the molecules themselves play a crucial role in regulating gene expression in individual cells.

Studying these three-dimensional structures in humans has been complicated by the diploid nature of our cells, which feature 23 chromosomes from a mother that are nearly indistinguishable from 23 chromosomes from a father.

"Telling the two copies apart to resolve their 3D structures was previously thought to be an impossible task," said Tan.

To solve the "diploid problem," Tan, a postdoctoral research fellow at Stanford University, developed an algorithm based on the way chromosomes are separated in a cell. It accurately infers the common parent-of-origin of individual chromosomes.

"With our algorithm, we are able to create a beautiful 3D picture of all 46 chromosomes in each cell," said Tan.

The SciLifeLab Prize, now in its seventh year, recognizes promising early-career scientists who conduct groundbreaking life-science research and includes a grand-prize award of $30,000. It is organized by SciLifeLab (Science for Life Laboratory), a national center for advanced molecular life sciences in Sweden and the journal Science. The Prize is also made possible through the generous support of the Knut and Alice Wallenberg Foundation - the largest private financier of research in Sweden - which primarily grants funding in natural sciences, technology and medicine.

In addition to visualizing chromosome structure in a cell, the approach allowed Tan to tell different cells apart without prior knowledge.

"Every cell has a different 3D genome structure. We found that, simply by knowing this structure, one can tell its cell type and, consequently, its biological functions," said Tan. The ability to "structure-type" single cells puts Dip-C on a growing list of single-cell "omics" tools useful for charting a comprehensive cell atlas.

In his grand-prize winning essay, "Three-dimensional genome structure of a single cell," which will appear in the November 22 issue of Science, Tan puts his new method to the test by showing how it can illuminate previously unclear aspects of the structural basis for smell in mice.

Like humans, the mouse genome is diploid. In a mouse's nose, specialized neurons sense orders by expressing specialized olfactory receptors (ORs), which are a collection of roughly 1,100 receptor genes spanning 17 different chromosomes. Each neuron, however, is capable of expressing a single receptor while silencing all others. In this way, single neurons sense a specific subset of smells.

Using Dip-C, Tan and his colleagues mapped all OR genes and their enhancers across mouse development and showed that chromosome organization changes during development and that the unique structure of OR genes and their enhancers are the basis for mice's "one-neuron-one-receptor" approach to smell.

"It is a great pleasure for SciLifeLab to co-host this young scientist prize again with Science and with the Knut and Alice Wallenberg foundation. The four scientists selected as prize winners have made remarkable and groundbreaking discoveries in their fields. They have also shown great talent in condensing their work and thoughts into a short essay. These essays were successful in a highly competitive peer review process carried out by the editors of the Science magazine. We congratulate the prize winners and look forward to welcoming them to Stockholm in December to deliver their prize lectures, take part in festive award ceremonies as well as engage in scientific discussions with the SciLifeLab community", says Olli Kallioniemi, Director of SciLifeLab.


The Science & SciLifeLab Prize for Young Scientists is an annual prize awarded to young scientists at an early stage in their careers for their outstanding life science research for which they've earned a Ph.D. The categories for the 2019 prize were Cell and Molecular Biology; Genomics, Proteomics and Systems Biology; Ecology and Environment; and Molecular Medicine.

Award applicants were asked to submit a 1,000-word essay that was judged by an independent editorial team organized by the journal Science. The content of each essay was evaluated on the quality of research and the researcher's ability to communicate the impact and contributions of their work on the scientific field.

The 2019 award also recognizes three category winners, whose essays will be published online at . Each of the category winners will receive $10,000 and be featured in Science. A podcast featuring additional commentary from Tan and the other winners will be available on 22 November at .

After the embargo has lifted, follow #ScienceSciLifeLabPrize or #SciLifeLabPrize on Twitter @ScienceMagazine @SciLifeLabPrize, @SciPak and Science & SciLifeLab Prize for Young Scientists on Facebook.

2019 Grand Prize Winner:

Longzhi Tan: For his essay, "Three-Dimensional Genome Structure of a Single Cell." Tan received his undergraduate degree in physics from the Massachusetts Institute of Technology and doctorate from Harvard University. Tan is currently a postdoctoral scholar at Stanford University and his research is focused on understanding 3D genome structure and its role in the diverse functions of individual human cell types.

2019 Category Winner:

Barbara Klump: For her essay on the topic of ecology and environment, "Tool-Using Crows, Culture and What It Means to Be Human." Klump received her Diplom-Biologin from Heidelberg University and her Ph.D. from the University of St. Andrews. Klump is currently a postdoctoral research fellow at the Max Planck Institute for Ornithology where she explores animal cognition and how a species' ecology and social structure shape its natural behaviors.

Humsa Venkatesh: For her essay on the topic of molecular medicine, "The Neural Regulation of Cancer." Venkatesh earned her undergraduate degree from the University of California, Berkeley and her Ph.D. from Stanford University. Venkatesh is currently a postdoctoral research fellow at Stanford where her research aims to reveal how cancers use the activity of neural networks to promote their growth.

Zibo Chen: For his essay on the topic of cell and molecular biology, "Creating the Protein Version of DNA Base Paring." Chen received his undergraduate degree from the National University of Singapore and Ph.D. from the University of Washington. Chen is currently a postdoctoral scholar at the California Institute of Technology focusing on building synthetic circuits using de novo designed proteins.

About SciLifeLab

As a national center for molecular biosciences in Sweden, SciLifeLab develops and maintains unique research infrastructure, services and data resources for life science. The center coordinates research communities in health and environmental science, recruitment and training of young scientists, and fosters collaboration with industry, health care, public research organizations and international partners. The overall aim of SciLifeLab is to facilitate cutting-edge, multi-disciplinary life science research and promote its translation to the benefit of society. SciLifeLab is jointly operated by its four founder universities: KTH Royal Institute of Technology, Karolinska Institutet, Stockholm University and Uppsala University. About 200 research groups, 1500 researchers and 40 national infrastructure facilities are associated with SciLifeLab. The two main research centers are located in Stockholm and Uppsala, but national SciLifeLab facilities exist at all major Swedish universities

About AAAS

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society and publisher of the journal Science as well as Science Translational Medicine, Science Signaling, Science Advances (a digital, open-access journal), Science Immunology, and Science Robotics. AAAS was founded in 1848 and includes nearly 250 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world. The non-profit AAAS is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy, international programs, science education, public engagement, and more. For the latest research news, log onto EurekAlert!, the premier science-news Web site, a service of AAAS. See

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.